[ https://issues.apache.org/jira/browse/HIVE-11394?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Lefty Leverenz updated HIVE-11394: ---------------------------------- Labels: TODOC2.2 (was: ) > Enhance EXPLAIN display for vectorization > ----------------------------------------- > > Key: HIVE-11394 > URL: https://issues.apache.org/jira/browse/HIVE-11394 > Project: Hive > Issue Type: Bug > Components: Hive > Reporter: Matt McCline > Assignee: Matt McCline > Priority: Critical > Labels: TODOC2.2 > Fix For: 2.2.0 > > Attachments: HIVE-11394.01.patch, HIVE-11394.02.patch, > HIVE-11394.03.patch, HIVE-11394.04.patch, HIVE-11394.05.patch, > HIVE-11394.06.patch, HIVE-11394.07.patch, HIVE-11394.08.patch, > HIVE-11394.09.patch, HIVE-11394.091.patch, HIVE-11394.092.patch, > HIVE-11394.093.patch > > > Add detail to the EXPLAIN output showing why a Map and Reduce work is not > vectorized. > New syntax is: EXPLAIN VECTORIZATION \[ONLY\] > \[SUMMARY|OPERATOR|EXPRESSION|DETAIL\] > The ONLY option suppresses most non-vectorization elements. > SUMMARY shows vectorization information for the PLAN (is vectorization > enabled) and a summary of Map and Reduce work. > OPERATOR shows vectorization information for operators. E.g. Filter > Vectorization. It includes all information of SUMMARY, too. > EXPRESSION shows vectorization information for expressions. E.g. > predicateExpression. It includes all information of SUMMARY and OPERATOR, > too. > DETAIL shows very vectorization information. > It includes all information of SUMMARY, OPERATOR, and EXPRESSION too. > The optional clause defaults are not ONLY and SUMMARY. > --------------------------------------------------------------------------------------------------- > Here are some examples: > EXPLAIN VECTORIZATION example: > (Note the PLAN VECTORIZATION, Map Vectorization, Reduce Vectorization > sections) > Since SUMMARY is the default, it is the output of EXPLAIN VECTORIZATION > SUMMARY. > Under Reducer 3’s "Reduce Vectorization:" you’ll see > notVectorizedReason: Aggregation Function UDF avg parameter expression for > GROUPBY operator: Data type struct<count:bigint,sum:double,input:int> of > Column\[VALUE._col2\] not supported > For Reducer 2’s "Reduce Vectorization:" you’ll see "groupByVectorOutput:": > "false" which says a node has a GROUP BY with an AVG or some other aggregator > that outputs a non-PRIMITIVE type (e.g. STRUCT) and all downstream operators > are row-mode. I.e. not vector output. > If "usesVectorUDFAdaptor:": "false" were true, it would say there was at > least one vectorized expression is using VectorUDFAdaptor. > And, "allNative:": "false" will be true when all operators are native. > Today, GROUP BY and FILE SINK are not native. MAP JOIN and REDUCE SINK are > conditionally native. FILTER and SELECT are native. > {code} > PLAN VECTORIZATION: > enabled: true > enabledConditionsMet: [hive.vectorized.execution.enabled IS true] > STAGE DEPENDENCIES: > Stage-1 is a root stage > Stage-0 depends on stages: Stage-1 > STAGE PLANS: > Stage: Stage-1 > Tez > ... > Edges: > Reducer 2 <- Map 1 (SIMPLE_EDGE) > Reducer 3 <- Reducer 2 (SIMPLE_EDGE) > ... > Vertices: > Map 1 > Map Operator Tree: > TableScan > alias: alltypesorc > Statistics: Num rows: 12288 Data size: 36696 Basic stats: > COMPLETE Column stats: COMPLETE > Select Operator > expressions: cint (type: int) > outputColumnNames: cint > Statistics: Num rows: 12288 Data size: 36696 Basic stats: > COMPLETE Column stats: COMPLETE > Group By Operator > keys: cint (type: int) > mode: hash > outputColumnNames: _col0 > Statistics: Num rows: 5775 Data size: 17248 Basic > stats: COMPLETE Column stats: COMPLETE > Reduce Output Operator > key expressions: _col0 (type: int) > sort order: + > Map-reduce partition columns: _col0 (type: int) > Statistics: Num rows: 5775 Data size: 17248 Basic > stats: COMPLETE Column stats: COMPLETE > Execution mode: vectorized, llap > LLAP IO: all inputs > Map Vectorization: > enabled: true > enabledConditionsMet: > hive.vectorized.use.vectorized.input.format IS true > groupByVectorOutput: true > inputFileFormats: > org.apache.hadoop.hive.ql.io.orc.OrcInputFormat > allNative: false > usesVectorUDFAdaptor: false > vectorized: true > Reducer 2 > Execution mode: vectorized, llap > Reduce Vectorization: > enabled: true > enableConditionsMet: hive.vectorized.execution.reduce.enabled > IS true, hive.execution.engine tez IN [tez, spark] IS true > groupByVectorOutput: false > allNative: false > usesVectorUDFAdaptor: false > vectorized: true > Reduce Operator Tree: > Group By Operator > keys: KEY._col0 (type: int) > mode: mergepartial > outputColumnNames: _col0 > Statistics: Num rows: 5775 Data size: 17248 Basic stats: > COMPLETE Column stats: COMPLETE > Group By Operator > aggregations: sum(_col0), count(_col0), avg(_col0), > std(_col0) > mode: hash > outputColumnNames: _col0, _col1, _col2, _col3 > Statistics: Num rows: 1 Data size: 172 Basic stats: > COMPLETE Column stats: COMPLETE > Reduce Output Operator > sort order: > Statistics: Num rows: 1 Data size: 172 Basic stats: > COMPLETE Column stats: COMPLETE > value expressions: _col0 (type: bigint), _col1 (type: > bigint), _col2 (type: struct<count:bigint,sum:double,input:int>), _col3 > (type: struct<count:bigint,sum:double,variance:double>) > Reducer 3 > Execution mode: llap > Reduce Vectorization: > enabled: true > enableConditionsMet: hive.vectorized.execution.reduce.enabled > IS true, hive.execution.engine tez IN [tez, spark] IS true > notVectorizedReason: Aggregation Function UDF avg parameter > expression for GROUPBY operator: Data type > struct<count:bigint,sum:double,input:int> of Column[VALUE._col2] not supported > vectorized: false > Reduce Operator Tree: > Group By Operator > aggregations: sum(VALUE._col0), count(VALUE._col1), > avg(VALUE._col2), std(VALUE._col3) > mode: mergepartial > outputColumnNames: _col0, _col1, _col2, _col3 > Statistics: Num rows: 1 Data size: 32 Basic stats: COMPLETE > Column stats: COMPLETE > File Output Operator > compressed: false > Statistics: Num rows: 1 Data size: 32 Basic stats: COMPLETE > Column stats: COMPLETE > table: > input format: > org.apache.hadoop.mapred.SequenceFileInputFormat > output format: > org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat > serde: > org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe > Stage: Stage-0 > Fetch Operator > limit: -1 > Processor Tree: > ListSink > {code} > EXPLAIN VECTORIZATION OPERATOR > Notice the added TableScan Vectorization, Select Vectorization, Group By > Vectorization, Map Join Vectorizatin, Reduce Sink Vectorization sections in > this example. > Notice the nativeConditionsMet detail on why Reduce Vectorization is native. > {code} > PLAN VECTORIZATION: > enabled: true > enabledConditionsMet: [hive.vectorized.execution.enabled IS true] > STAGE DEPENDENCIES: > Stage-1 is a root stage > Stage-0 depends on stages: Stage-1 > STAGE PLANS: > Stage: Stage-1 > Tez > #### A masked pattern was here #### > Edges: > Map 2 <- Map 1 (BROADCAST_EDGE) > Reducer 3 <- Map 2 (SIMPLE_EDGE) > #### A masked pattern was here #### > Vertices: > Map 1 > Map Operator Tree: > TableScan > alias: a > Statistics: Num rows: 3 Data size: 294 Basic stats: > COMPLETE Column stats: NONE > TableScan Vectorization: > native: true > projectedOutputColumns: [0, 1] > Filter Operator > Filter Vectorization: > className: VectorFilterOperator > native: true > predicate: c2 is not null (type: boolean) > Statistics: Num rows: 3 Data size: 294 Basic stats: > COMPLETE Column stats: NONE > Select Operator > expressions: c1 (type: int), c2 (type: char(10)) > outputColumnNames: _col0, _col1 > Select Vectorization: > className: VectorSelectOperator > native: true > projectedOutputColumns: [0, 1] > Statistics: Num rows: 3 Data size: 294 Basic stats: > COMPLETE Column stats: NONE > Reduce Output Operator > key expressions: _col1 (type: char(20)) > sort order: + > Map-reduce partition columns: _col1 (type: char(20)) > Reduce Sink Vectorization: > className: VectorReduceSinkStringOperator > native: true > nativeConditionsMet: > hive.vectorized.execution.reducesink.new.enabled IS true, > hive.execution.engine tez IN [tez, spark] IS true, Not ACID UPDATE or DELETE > IS true, No buckets IS true, No TopN IS true, Uniform Hash IS true, No > DISTINCT columns IS true, BinarySortableSerDe for keys IS true, > LazyBinarySerDe for values IS true > Statistics: Num rows: 3 Data size: 294 Basic stats: > COMPLETE Column stats: NONE > value expressions: _col0 (type: int) > Execution mode: vectorized, llap > LLAP IO: all inputs > Map Vectorization: > enabled: true > enabledConditionsMet: > hive.vectorized.use.vectorized.input.format IS true > groupByVectorOutput: true > inputFileFormats: > org.apache.hadoop.hive.ql.io.orc.OrcInputFormat > allNative: true > usesVectorUDFAdaptor: false > vectorized: true > Map 2 > Map Operator Tree: > TableScan > alias: b > Statistics: Num rows: 3 Data size: 324 Basic stats: > COMPLETE Column stats: NONE > TableScan Vectorization: > native: true > projectedOutputColumns: [0, 1] > Filter Operator > Filter Vectorization: > className: VectorFilterOperator > native: true > predicate: c2 is not null (type: boolean) > Statistics: Num rows: 3 Data size: 324 Basic stats: > COMPLETE Column stats: NONE > Select Operator > expressions: c1 (type: int), c2 (type: char(20)) > outputColumnNames: _col0, _col1 > Select Vectorization: > className: VectorSelectOperator > native: true > projectedOutputColumns: [0, 1] > Statistics: Num rows: 3 Data size: 324 Basic stats: > COMPLETE Column stats: NONE > Map Join Operator > condition map: > Inner Join 0 to 1 > keys: > 0 _col1 (type: char(20)) > 1 _col1 (type: char(20)) > Map Join Vectorization: > className: VectorMapJoinInnerStringOperator > native: true > nativeConditionsMet: > hive.vectorized.execution.mapjoin.native.enabled IS true, > hive.execution.engine tez IN [tez, spark] IS true, One MapJoin Condition IS > true, No nullsafe IS true, Supports Key Types IS true, Not empty key IS true, > When Fast Hash Table, then requires no Hybrid Hash Join IS true, Small table > vectorizes IS true > outputColumnNames: _col0, _col1, _col2, _col3 > input vertices: > 0 Map 1 > Statistics: Num rows: 3 Data size: 323 Basic stats: > COMPLETE Column stats: NONE > Reduce Output Operator > key expressions: _col0 (type: int) > sort order: + > Reduce Sink Vectorization: > className: VectorReduceSinkOperator > native: false > nativeConditionsMet: > hive.vectorized.execution.reducesink.new.enabled IS true, > hive.execution.engine tez IN [tez, spark] IS true, Not ACID UPDATE or DELETE > IS true, No buckets IS true, No TopN IS true, No DISTINCT columns IS true, > BinarySortableSerDe for keys IS true, LazyBinarySerDe for values IS true > nativeConditionsNotMet: Uniform Hash IS false > Statistics: Num rows: 3 Data size: 323 Basic stats: > COMPLETE Column stats: NONE > value expressions: _col1 (type: char(10)), _col2 > (type: int), _col3 (type: char(20)) > Execution mode: vectorized, llap > LLAP IO: all inputs > Map Vectorization: > enabled: true > enabledConditionsMet: > hive.vectorized.use.vectorized.input.format IS true > groupByVectorOutput: true > inputFileFormats: > org.apache.hadoop.hive.ql.io.orc.OrcInputFormat > allNative: false > usesVectorUDFAdaptor: false > vectorized: true > Reducer 3 > Execution mode: vectorized, llap > Reduce Vectorization: > enabled: true > enableConditionsMet: hive.vectorized.execution.reduce.enabled > IS true, hive.execution.engine tez IN [tez, spark] IS true > groupByVectorOutput: true > allNative: false > usesVectorUDFAdaptor: false > vectorized: true > Reduce Operator Tree: > Select Operator > expressions: KEY.reducesinkkey0 (type: int), VALUE._col0 > (type: char(10)), VALUE._col1 (type: int), VALUE._col2 (type: char(20)) > outputColumnNames: _col0, _col1, _col2, _col3 > Select Vectorization: > className: VectorSelectOperator > native: true > projectedOutputColumns: [0, 1, 2, 3] > Statistics: Num rows: 3 Data size: 323 Basic stats: COMPLETE > Column stats: NONE > File Output Operator > compressed: false > File Sink Vectorization: > className: VectorFileSinkOperator > native: false > Statistics: Num rows: 3 Data size: 323 Basic stats: > COMPLETE Column stats: NONE > table: > input format: > org.apache.hadoop.mapred.SequenceFileInputFormat > output format: > org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat > serde: > org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe > Stage: Stage-0 > Fetch Operator > limit: -1 > Processor Tree: > ListSink > {code} > EXPLAIN VECTORIZATION EXPRESSION > Notice the predicateExpression in this example. > {code} > PLAN VECTORIZATION: > enabled: true > enabledConditionsMet: [hive.vectorized.execution.enabled IS true] > STAGE DEPENDENCIES: > Stage-1 is a root stage > Stage-0 depends on stages: Stage-1 > STAGE PLANS: > Stage: Stage-1 > Tez > #### A masked pattern was here #### > Edges: > Reducer 2 <- Map 1 (SIMPLE_EDGE) > #### A masked pattern was here #### > Vertices: > Map 1 > Map Operator Tree: > TableScan > alias: vector_interval_2 > Statistics: Num rows: 2 Data size: 788 Basic stats: > COMPLETE Column stats: NONE > TableScan Vectorization: > native: true > projectedOutputColumns: [0, 1, 2, 3, 4, 5] > Filter Operator > Filter Vectorization: > className: VectorFilterOperator > native: true > predicateExpression: FilterExprAndExpr(children: > FilterTimestampScalarEqualTimestampColumn(val 2001-01-01 01:02:03.0, col > 6)(children: DateColAddIntervalDayTimeScalar(col 1, val 0 01:02:03.000000000) > -> 6:timestamp) -> boolean, FilterTimestampScalarNotEqualTimestampColumn(val > 2001-01-01 01:02:03.0, col 6)(children: DateColAddIntervalDayTimeScalar(col > 1, val 0 01:02:04.000000000) -> 6:timestamp) -> boolean, > FilterTimestampScalarLessEqualTimestampColumn(val 2001-01-01 01:02:03.0, col > 6)(children: DateColAddIntervalDayTimeScalar(col 1, val 0 01:02:03.000000000) > -> 6:timestamp) -> boolean, FilterTimestampScalarLessTimestampColumn(val > 2001-01-01 01:02:03.0, col 6)(children: DateColAddIntervalDayTimeScalar(col > 1, val 0 01:02:04.000000000) -> 6:timestamp) -> boolean, > FilterTimestampScalarGreaterEqualTimestampColumn(val 2001-01-01 01:02:03.0, > col 6)(children: DateColSubtractIntervalDayTimeScalar(col 1, val 0 > 01:02:03.000000000) -> 6:timestamp) -> boolean, > FilterTimestampScalarGreaterTimestampColumn(val 2001-01-01 01:02:03.0, col > 6)(children: DateColSubtractIntervalDayTimeScalar(col 1, val 0 > 01:02:04.000000000) -> 6:timestamp) -> boolean, > FilterTimestampColEqualTimestampScalar(col 6, val 2001-01-01 > 01:02:03.0)(children: DateColAddIntervalDayTimeScalar(col 1, val 0 > 01:02:03.000000000) -> 6:timestamp) -> boolean, > FilterTimestampColNotEqualTimestampScalar(col 6, val 2001-01-01 > 01:02:03.0)(children: DateColAddIntervalDayTimeScalar(col 1, val 0 > 01:02:04.000000000) -> 6:timestamp) -> boolean, > FilterTimestampColGreaterEqualTimestampScalar(col 6, val 2001-01-01 > 01:02:03.0)(children: DateColAddIntervalDayTimeScalar(col 1, val 0 > 01:02:03.000000000) -> 6:timestamp) -> boolean, > FilterTimestampColGreaterTimestampScalar(col 6, val 2001-01-01 > 01:02:03.0)(children: DateColAddIntervalDayTimeScalar(col 1, val 0 > 01:02:04.000000000) -> 6:timestamp) -> boolean, > FilterTimestampColLessEqualTimestampScalar(col 6, val 2001-01-01 > 01:02:03.0)(children: DateColSubtractIntervalDayTimeScalar(col 1, val 0 > 01:02:03.000000000) -> 6:timestamp) -> boolean, > FilterTimestampColLessTimestampScalar(col 6, val 2001-01-01 > 01:02:03.0)(children: DateColSubtractIntervalDayTimeScalar(col 1, val 0 > 01:02:04.000000000) -> 6:timestamp) -> boolean, > FilterTimestampColEqualTimestampColumn(col 0, col 6)(children: > DateColAddIntervalDayTimeScalar(col 1, val 0 01:02:03.000000000) -> > 6:timestamp) -> boolean, FilterTimestampColNotEqualTimestampColumn(col 0, col > 6)(children: DateColAddIntervalDayTimeScalar(col 1, val 0 01:02:04.000000000) > -> 6:timestamp) -> boolean, FilterTimestampColLessEqualTimestampColumn(col 0, > col 6)(children: DateColAddIntervalDayTimeScalar(col 1, val 0 > 01:02:03.000000000) -> 6:timestamp) -> boolean, > FilterTimestampColLessTimestampColumn(col 0, col 6)(children: > DateColAddIntervalDayTimeScalar(col 1, val 0 01:02:04.000000000) -> > 6:timestamp) -> boolean, FilterTimestampColGreaterEqualTimestampColumn(col 0, > col 6)(children: DateColSubtractIntervalDayTimeScalar(col 1, val 0 > 01:02:03.000000000) -> 6:timestamp) -> boolean, > FilterTimestampColGreaterTimestampColumn(col 0, col 6)(children: > DateColSubtractIntervalDayTimeScalar(col 1, val 0 01:02:04.000000000) -> > 6:timestamp) -> boolean) -> boolean > predicate: ((2001-01-01 01:02:03.0 = (dt + 0 > 01:02:03.000000000)) and (2001-01-01 01:02:03.0 <> (dt + 0 > 01:02:04.000000000)) and (2001-01-01 01:02:03.0 <= (dt + 0 > 01:02:03.000000000)) and (2001-01-01 01:02:03.0 < (dt + 0 > 01:02:04.000000000)) and (2001-01-01 01:02:03.0 >= (dt - 0 > 01:02:03.000000000)) and (2001-01-01 01:02:03.0 > (dt - 0 > 01:02:04.000000000)) and ((dt + 0 01:02:03.000000000) = 2001-01-01 > 01:02:03.0) and ((dt + 0 01:02:04.000000000) <> 2001-01-01 01:02:03.0) and > ((dt + 0 01:02:03.000000000) >= 2001-01-01 01:02:03.0) and ((dt + 0 > 01:02:04.000000000) > 2001-01-01 01:02:03.0) and ((dt - 0 01:02:03.000000000) > <= 2001-01-01 01:02:03.0) and ((dt - 0 01:02:04.000000000) < 2001-01-01 > 01:02:03.0) and (ts = (dt + 0 01:02:03.000000000)) and (ts <> (dt + 0 > 01:02:04.000000000)) and (ts <= (dt + 0 01:02:03.000000000)) and (ts < (dt + > 0 01:02:04.000000000)) and (ts >= (dt - 0 01:02:03.000000000)) and (ts > (dt > - 0 01:02:04.000000000))) (type: boolean) > Statistics: Num rows: 1 Data size: 394 Basic stats: > COMPLETE Column stats: NONE > Select Operator > expressions: ts (type: timestamp) > outputColumnNames: _col0 > Select Vectorization: > className: VectorSelectOperator > native: true > projectedOutputColumns: [0] > Statistics: Num rows: 1 Data size: 394 Basic stats: > COMPLETE Column stats: NONE > Reduce Output Operator > key expressions: _col0 (type: timestamp) > sort order: + > Reduce Sink Vectorization: > className: VectorReduceSinkOperator > native: false > nativeConditionsMet: > hive.vectorized.execution.reducesink.new.enabled IS true, > hive.execution.engine tez IN [tez, spark] IS true, Not ACID UPDATE or DELETE > IS true, No buckets IS true, No TopN IS true, No DISTINCT columns IS true, > BinarySortableSerDe for keys IS true, LazyBinarySerDe for values IS true > nativeConditionsNotMet: Uniform Hash IS false > Statistics: Num rows: 1 Data size: 394 Basic stats: > COMPLETE Column stats: NONE > Execution mode: vectorized, llap > LLAP IO: all inputs > Map Vectorization: > enabled: true > enabledConditionsMet: > hive.vectorized.use.vectorized.input.format IS true > groupByVectorOutput: true > inputFileFormats: > org.apache.hadoop.hive.ql.io.orc.OrcInputFormat > allNative: false > usesVectorUDFAdaptor: false > vectorized: true > Reducer 2 > ... > {code} > The standard @Explain Annotation Type is used. A new 'vectorization' > annotation marks each new class and method. > Works for FORMATTED, like other non-vectorization EXPLAIN variations. -- This message was sent by Atlassian JIRA (v6.3.4#6332)