[ https://issues.apache.org/jira/browse/HIVE-16793?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Vineet Garg updated HIVE-16793: ------------------------------- Attachment: HIVE-16793.1.patch First patch adds a rule to remove sq_count_check branch if group by key is constant. Known issues: This patch cause multiple joins for scalar subqueries to not merge anymore (since there is a project b/w them now) Changes could be viewed at: [Github branch | https://github.com/apache/hive/compare/master...vineetgarg02:sq-count-check-groupby-constant-fold] > Scalar sub-query: Scalar safety checks for explicit group-bys > ------------------------------------------------------------- > > Key: HIVE-16793 > URL: https://issues.apache.org/jira/browse/HIVE-16793 > Project: Hive > Issue Type: Bug > Components: SQL > Affects Versions: 3.0.0 > Reporter: Gopal V > Assignee: Vineet Garg > Attachments: HIVE-16793.1.patch > > > This query has an sq_count check, though is useless on a constant key. > {code} > hive> explain select * from part where p_size > (select max(p_size) from part > where p_type = '1' group by p_type); > Warning: Map Join MAPJOIN[37][bigTable=?] in task 'Map 1' is a cross product > Warning: Map Join MAPJOIN[36][bigTable=?] in task 'Map 1' is a cross product > OK > Plan optimized by CBO. > Vertex dependency in root stage > Map 1 <- Reducer 4 (BROADCAST_EDGE), Reducer 6 (BROADCAST_EDGE) > Reducer 3 <- Map 2 (SIMPLE_EDGE) > Reducer 4 <- Reducer 3 (CUSTOM_SIMPLE_EDGE) > Reducer 6 <- Map 5 (SIMPLE_EDGE) > Stage-0 > Fetch Operator > limit:-1 > Stage-1 > Map 1 vectorized, llap > File Output Operator [FS_64] > Select Operator [SEL_63] (rows=66666666 width=621) > > Output:["_col0","_col1","_col2","_col3","_col4","_col5","_col6","_col7","_col8"] > Filter Operator [FIL_62] (rows=66666666 width=625) > predicate:(_col5 > _col10) > Map Join Operator [MAPJOIN_61] (rows=200000000 width=625) > > Conds:(Inner),Output:["_col0","_col1","_col2","_col3","_col4","_col5","_col6","_col7","_col8","_col10"] > <-Reducer 6 [BROADCAST_EDGE] vectorized, llap > BROADCAST [RS_58] > Select Operator [SEL_57] (rows=1 width=4) > Output:["_col0"] > Group By Operator [GBY_56] (rows=1 width=89) > > Output:["_col0","_col1"],aggregations:["max(VALUE._col0)"],keys:KEY._col0 > <-Map 5 [SIMPLE_EDGE] vectorized, llap > SHUFFLE [RS_55] > PartitionCols:_col0 > Group By Operator [GBY_54] (rows=86 width=89) > > Output:["_col0","_col1"],aggregations:["max(_col1)"],keys:'1' > Select Operator [SEL_53] (rows=1212121 width=109) > Output:["_col1"] > Filter Operator [FIL_52] (rows=1212121 width=109) > predicate:(p_type = '1') > TableScan [TS_17] (rows=200000000 width=109) > > tpch_flat_orc_1000@part,part,Tbl:COMPLETE,Col:COMPLETE,Output:["p_type","p_size"] > <-Map Join Operator [MAPJOIN_60] (rows=200000000 width=621) > > Conds:(Inner),Output:["_col0","_col1","_col2","_col3","_col4","_col5","_col6","_col7","_col8"] > <-Reducer 4 [BROADCAST_EDGE] vectorized, llap > BROADCAST [RS_51] > Select Operator [SEL_50] (rows=1 width=8) > Filter Operator [FIL_49] (rows=1 width=8) > predicate:(sq_count_check(_col0) <= 1) > Group By Operator [GBY_48] (rows=1 width=8) > Output:["_col0"],aggregations:["count(VALUE._col0)"] > <-Reducer 3 [CUSTOM_SIMPLE_EDGE] vectorized, llap > PARTITION_ONLY_SHUFFLE [RS_47] > Group By Operator [GBY_46] (rows=1 width=8) > Output:["_col0"],aggregations:["count()"] > Select Operator [SEL_45] (rows=1 width=85) > Group By Operator [GBY_44] (rows=1 width=85) > Output:["_col0"],keys:KEY._col0 > <-Map 2 [SIMPLE_EDGE] vectorized, llap > SHUFFLE [RS_43] > PartitionCols:_col0 > Group By Operator [GBY_42] (rows=83 > width=85) > Output:["_col0"],keys:'1' > Select Operator [SEL_41] (rows=1212121 > width=105) > Filter Operator [FIL_40] (rows=1212121 > width=105) > predicate:(p_type = '1') > TableScan [TS_2] (rows=200000000 > width=105) > > tpch_flat_orc_1000@part,part,Tbl:COMPLETE,Col:COMPLETE,Output:["p_type"] > <-Select Operator [SEL_59] (rows=200000000 width=621) > > Output:["_col0","_col1","_col2","_col3","_col4","_col5","_col6","_col7","_col8"] > TableScan [TS_0] (rows=200000000 width=621) > > tpch_flat_orc_1000@part,part,Tbl:COMPLETE,Col:COMPLETE,Output:["p_partkey","p_name","p_mfgr","p_brand","p_type","p_size","p_container","p_retailprice","p_comment"] > {code} > -The other version without the filter is missing the check, though the > compiler cannot assume the nDV of p_type.- Fixed by HIVE-16851 -- This message was sent by Atlassian JIRA (v6.4.14#64029)