Github user myui commented on a diff in the pull request: https://github.com/apache/incubator-hivemall/pull/167#discussion_r226578559 --- Diff: core/src/main/java/hivemall/mf/CofactorModel.java --- @@ -0,0 +1,715 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ +package hivemall.mf; + +import hivemall.annotations.VisibleForTesting; +import hivemall.fm.Feature; +import hivemall.utils.lang.Preconditions; +import hivemall.utils.math.MathUtils; +import it.unimi.dsi.fastutil.objects.Object2DoubleArrayMap; +import it.unimi.dsi.fastutil.objects.Object2DoubleMap; +import org.apache.commons.math3.linear.ArrayRealVector; +import org.apache.commons.math3.linear.Array2DRowRealMatrix; +import org.apache.commons.math3.linear.RealMatrix; +import org.apache.commons.math3.linear.RealVector; +import org.apache.commons.math3.linear.SingularValueDecomposition; +import org.apache.hadoop.hive.ql.metadata.HiveException; + +import javax.annotation.Nonnegative; +import javax.annotation.Nonnull; +import javax.annotation.Nullable; +import java.util.ArrayList; +import java.util.HashMap; +import java.util.List; +import java.util.Map; +import java.util.Random; + + +public class CofactorModel { + + public enum RankInitScheme { + random /* default */, gaussian; + + + @Nonnegative + private float maxInitValue; + @Nonnegative + private double initStdDev; + @Nonnull + public static CofactorModel.RankInitScheme resolve(@Nullable String opt) { + if (opt == null) { + return random; + } else if ("gaussian".equalsIgnoreCase(opt)) { + return gaussian; + } else if ("random".equalsIgnoreCase(opt)) { + return random; + } + return random; + } + + public void setMaxInitValue(float maxInitValue) { + this.maxInitValue = maxInitValue; + } + + public void setInitStdDev(double initStdDev) { + this.initStdDev = initStdDev; + } + + + } + + @Nonnegative + private final int factor; + + // rank matrix initialization + private final RankInitScheme initScheme; + + @Nonnull + private double globalBias; + + // storing trainable latent factors and weights + private final Map<String, double[]> theta; + private final Map<String, double[]> beta; + private final Object2DoubleMap<String> betaBias; + private final Map<String, double[]> gamma; + private final Object2DoubleMap<String> gammaBias; + + private final Random[] randU, randI; + + // hyperparameters + private final float c0, c1; + private final float lambdaTheta, lambdaBeta, lambdaGamma; + + // solve + private final RealMatrix B; + private final RealVector A; + + // error message strings + private static final String ARRAY_NOT_SQUARE_ERR = "Array is not square"; + private static final String DIFFERENT_DIMS_ERR = "Matrix, vector or array do not match in size"; + + public CofactorModel(@Nonnegative int factor, @Nonnull RankInitScheme initScheme, + float c0, float c1, float lambdaTheta, float lambdaBeta, float lambdaGamma) { + + // rank init scheme is gaussian + // https://github.com/dawenl/cofactor/blob/master/src/cofacto.py#L98 + this.factor = factor; + this.initScheme = initScheme; + this.globalBias = 0.d; + this.lambdaTheta = lambdaTheta; + this.lambdaBeta = lambdaBeta; + this.lambdaGamma = lambdaGamma; + + this.theta = new HashMap<>(); + this.beta = new HashMap<>(); + this.betaBias = new Object2DoubleArrayMap<>(); + this.betaBias.defaultReturnValue(0.d); + this.gamma = new HashMap<>(); + this.gammaBias = new Object2DoubleArrayMap<>(); + this.gammaBias.defaultReturnValue(0.d); + + this.B = new Array2DRowRealMatrix(this.factor, this.factor); + this.A = new ArrayRealVector(this.factor); + + this.randU = newRandoms(factor, 31L); + this.randI = newRandoms(factor, 41L); + + Preconditions.checkArgument(c0 >= 0.f && c0 <= 1.f); + Preconditions.checkArgument(c1 >= 0.f && c1 <= 1.f); + this.c0 = c0; + this.c1 = c1; + --- End diff -- break line
---