Fokko commented on code in PR #1839:
URL: https://github.com/apache/iceberg-python/pull/1839#discussion_r2020991374
##########
pyiceberg/io/pyarrow.py:
##########
@@ -2350,8 +2351,19 @@ def data_file_statistics_from_parquet_metadata(
stats_col.iceberg_type, statistics.physical_type,
stats_col.mode.length
)
- col_aggs[field_id].update_min(statistics.min)
- col_aggs[field_id].update_max(statistics.max)
+ if isinstance(stats_col.iceberg_type, DecimalType) and
statistics.physical_type != "FIXED_LEN_BYTE_ARRAY":
+ precision = stats_col.iceberg_type.precision
+ scale = stats_col.iceberg_type.scale
+ decimal_type = pa.decimal128(precision, scale)
+ col_aggs[field_id].update_min(
+ pa.array([Decimal(statistics.min_raw) /
(10**scale)], decimal_type)[0].as_py()
+ )
+ col_aggs[field_id].update_max(
+ pa.array([Decimal(statistics.max_raw) /
(10**scale)], decimal_type)[0].as_py()
+ )
Review Comment:
I think we can simplify this into:
```suggestion
scale = stats_col.iceberg_type.scale
col_aggs[field_id].update_min(unscaled_to_decimal(statistics.min_raw, scale))
col_aggs[field_id].update_max(unscaled_to_decimal(statistics.max_raw, scale))
```
We already have the `unscale_to_decimal` that we can import from
`pyiceberg.utils.decimal`.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]