[ https://issues.apache.org/jira/browse/IGNITE-3018?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15263823#comment-15263823 ]
Taras Ledkov commented on IGNITE-3018: -------------------------------------- I propose to switch algorithm to bucket based in case of large node count. It can improve performance of affinity function for large node count. > Cache affinity calculation is slow with large nodes number > ---------------------------------------------------------- > > Key: IGNITE-3018 > URL: https://issues.apache.org/jira/browse/IGNITE-3018 > Project: Ignite > Issue Type: Bug > Components: cache > Reporter: Semen Boikov > Assignee: Taras Ledkov > Priority: Critical > Fix For: 1.6 > > > With large number of cache server nodes (> 200) RendezvousAffinityFunction > and FairAffinityFunction work pretty slow . > For RendezvousAffinityFunction.assignPartitions can take hundredes of > milliseconds, for FairAffinityFunction it can take seconds. > For RendezvousAffinityFunction most time is spent in MD5 hash calculation and > nodes list sorting. As optimization we can try to cache {partion, node} MD5 > hash or try another hash function. Also several minor optimizations are > possible (avoid unncecessary allocations, only one thread local 'get', etc). -- This message was sent by Atlassian JIRA (v6.3.4#6332)