[ 
https://issues.apache.org/jira/browse/IGNITE-9283?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Aleksey Zinoviev updated IGNITE-9283:
-------------------------------------
    Description: 
Add [https://en.wikipedia.org/wiki/Discrete_cosine_transform]

Please look at the MinMaxScaler or Normalization packages in preprocessing 
package.

Add classes if required

1) Preprocessor

2) Trainer

3) custom PartitionData if shuffling is a step of algorithm

 

Requirements for successful PR:
 # PartitionedDataset usage
 # Trainer-Model paradigm support
 # Tests for Model and for Trainer (and other stuff)
 # Example of usage with small, but famous dataset like IRIS, Titanic or House 
Prices
 # Javadocs/codestyle according guidelines

 

 

  was:
Add [https://en.wikipedia.org/wiki/Discrete_cosine_transform]

Please look at the MinMaxScaler or Normalization packages in preprocessing 
package.

Add classes if required

1) Preprocessor

2) Trainer

3) custom PartitionData if shuffling is a step of algorithm

 

 


> [ML] Add Discrete Cosine preprocessor
> -------------------------------------
>
>                 Key: IGNITE-9283
>                 URL: https://issues.apache.org/jira/browse/IGNITE-9283
>             Project: Ignite
>          Issue Type: Sub-task
>          Components: ml
>            Reporter: Aleksey Zinoviev
>            Priority: Major
>
> Add [https://en.wikipedia.org/wiki/Discrete_cosine_transform]
> Please look at the MinMaxScaler or Normalization packages in preprocessing 
> package.
> Add classes if required
> 1) Preprocessor
> 2) Trainer
> 3) custom PartitionData if shuffling is a step of algorithm
>  
> Requirements for successful PR:
>  # PartitionedDataset usage
>  # Trainer-Model paradigm support
>  # Tests for Model and for Trainer (and other stuff)
>  # Example of usage with small, but famous dataset like IRIS, Titanic or 
> House Prices
>  # Javadocs/codestyle according guidelines
>  
>  



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to