[ https://issues.apache.org/jira/browse/MADLIB-1240?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Frank McQuillan updated MADLIB-1240: ------------------------------------ Description: related to https://issues.apache.org/jira/browse/MADLIB-1239 Vector to Columns Converts a feature array in a single column of an output table into multiple columns. This process can be used to reverse the function cols2vec. {code} vec2cols( source_table, out_table, vector_col, feature_names, cols_to_output ) source_table TEXT. Name of the table containing the source data. out_table TEXT. Name of the generated table containing the output. If a table with the same name already exists, an error will be returned. vector_col TEXT. Name of the column containing the feature array. Must be a one-dimensional array. feature_names (optional) TEXT[]. Array of names associated with the feature array. Note that this array exists in the summary table created by the function 'cols2vec'. If the feature_names array is not specified, column names will be automatically generated of the form 'f1, f2, ...fn' cols_to_output (optional) TEXT, default NULL. Comma-separated string of column names from the source table to keep in the output table, in addition to the feature columns. To keep all columns from the source table, use '*'. Output The output table produced by the vec2cols function contains the following columns: <...> Columns from source table, depending on which ones are kept (if any). feature columns Columns for each of the features in 'vector_col'. Column type will depend on the feature array type in the source table. Column naming will depend on whether the parameter 'feature_names' is used. {code} Notes (1) The function http://pivotalsoftware.github.io/PDLTools/group__ArrayUtilities.html is similar but the proposed MADlib one has more options. To do the equivalent of the PDL Tools one in MADlib, you would do: {code} vec2cols( table_name, output_table, vector_column, NULL, '*' ) {code} (2) Please put the generated feature columns on the right side of the output table, i.e., they will be the last column on the right. Maintain the order of the array. Examples of dictionary usage {code} select vec2cols( source_table, out_table, vector_col, SELECT col_names FROM a_table, -- dictionary array exists in table 'a_table' cols_to_output ) {code} OR {code} select vec2cols( source_table, out_table, vector_col, dictionary, cols_to_output ) from (select col_names as dictionary from a_table) q -- dictionary array exists in table 'a_table' {code} OR {code} select vec2cols( source_table, out_table, vector_col, {'n1', 'n2'... 'nn'}, -- user explicitly enters dictionary cols_to_output ) {code} OR {code} select vec2cols( source_table, out_table, vector_col, NULL, -- no dictionary exists, will auto-generate column names as f1, f2, ... cols_to_output ) {code} was: related to https://issues.apache.org/jira/browse/MADLIB-1239 Vector to Columns Converts a feature array in a single column of an output table into multiple columns. This process can be used to reverse the function cols2vec. {code} vec2cols( source_table, out_table, vector_col, dictionary, cols_to_output ) source_table TEXT. Name of the table containing the source data. out_table TEXT. Name of the generated table containing the output. If a table with the same name already exists, an error will be returned. vector_col TEXT. Name of the column containing the feature array. Must be a one-dimensional array. dictionary (optional) TEXT[]. Array of names associated with the feature array. Note that this array exists in the summary table created by the function 'cols2vec'. If the dictionary array is not specified, column names will be automatically generated of the form 'f1, f2, ...fn' cols_to_output (optional) TEXT, default NULL. Comma-separated string of column names from the source table to keep in the output table, in addition to the feature columns. To keep all columns from the source table, use '*'. Output The output table produced by the vec2cols function contains the following columns: <...> Columns from source table, depending on which ones are kept (if any). feature columns Columns for each of the features in 'vector_col'. Column type will depend on the feature array type in the source table. Column naming will depend on whether the parameter 'dictionary' is used. {code} Notes (1) The function http://pivotalsoftware.github.io/PDLTools/group__ArrayUtilities.html is similar but the proposed MADlib one has more options. To do the equivalent of the PDL Tools one in MADlib, you would do: {code} vec2cols( table_name, output_table, vector_column, NULL, '*' ) {code} (2) Please put the generated feature columns on the right side of the output table, i.e., they will be the last column on the right. Maintain the order of the array. Examples of dictionary usage {code} select vec2cols( source_table, out_table, vector_col, SELECT col_names FROM a_table, -- dictionary array exists in table 'a_table' cols_to_output ) {code} OR {code} select vec2cols( source_table, out_table, vector_col, dictionary, cols_to_output ) from (select col_names as dictionary from a_table) q -- dictionary array exists in table 'a_table' {code} OR {code} select vec2cols( source_table, out_table, vector_col, {'n1', 'n2'... 'nn'}, -- user explicitly enters dictionary cols_to_output ) {code} OR {code} select vec2cols( source_table, out_table, vector_col, NULL, -- no dictionary exists, will auto-generate column names as f1, f2, ... cols_to_output ) {code} > Vector to Columns > ----------------- > > Key: MADLIB-1240 > URL: https://issues.apache.org/jira/browse/MADLIB-1240 > Project: Apache MADlib > Issue Type: New Feature > Components: Module: Utilities > Reporter: Frank McQuillan > Assignee: Nandish Jayaram > Priority: Major > Fix For: v1.15 > > > related to https://issues.apache.org/jira/browse/MADLIB-1239 > Vector to Columns > Converts a feature array in a single column of an output table into multiple > columns. This process can be used to reverse the function cols2vec. > {code} > vec2cols( > source_table, > out_table, > vector_col, > feature_names, > cols_to_output > ) > source_table > TEXT. Name of the table containing the source data. > out_table > TEXT. Name of the generated table containing the output. If a table with the > same name already exists, an error will be returned. > vector_col > TEXT. Name of the column containing the feature array. Must be a > one-dimensional array. > feature_names (optional) > TEXT[]. Array of names associated with the feature array. Note that this > array exists in the summary table created by the function 'cols2vec'. If the > feature_names array is not specified, column names will be automatically > generated of the form 'f1, f2, ...fn' > cols_to_output (optional) > TEXT, default NULL. Comma-separated string of column names from the source > table to keep in the output table, in addition to the feature columns. To > keep all columns from the source table, use '*'. > Output > The output table produced by the vec2cols function contains the following > columns: > <...> > Columns from source table, depending on which ones are kept (if any). > feature columns > Columns for each of the features in 'vector_col'. Column type will depend on > the feature array type in the source table. Column naming will depend on > whether the parameter 'feature_names' is used. > {code} > Notes > (1) > The function > http://pivotalsoftware.github.io/PDLTools/group__ArrayUtilities.html > is similar but the proposed MADlib one has more options. To do the > equivalent of the PDL Tools one in MADlib, you would do: > {code} > vec2cols( > table_name, > output_table, > vector_column, > NULL, > '*' > ) > {code} > (2) > Please put the generated feature columns on the right side of the output > table, i.e., they will be the last column on the right. Maintain the order > of the array. > Examples of dictionary usage > {code} > select vec2cols( > source_table, > out_table, > vector_col, > SELECT col_names FROM a_table, -- dictionary array exists in table 'a_table' > cols_to_output > ) > {code} > OR > {code} > select vec2cols( > source_table, > out_table, > vector_col, > dictionary, > cols_to_output > ) from (select col_names as dictionary from a_table) q -- dictionary array > exists in table 'a_table' > {code} > OR > {code} > select vec2cols( > source_table, > out_table, > vector_col, > {'n1', 'n2'... 'nn'}, -- user explicitly enters dictionary > cols_to_output > ) > {code} > OR > {code} > select vec2cols( > source_table, > out_table, > vector_col, > NULL, -- no dictionary exists, will auto-generate column names as f1, f2, ... > cols_to_output > ) > {code} -- This message was sent by Atlassian JIRA (v7.6.3#76005)