[ 
https://issues.apache.org/jira/browse/MADLIB-1254?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16556365#comment-16556365
 ] 

Frank McQuillan commented on MADLIB-1254:
-----------------------------------------

The arrays are now the same length:

{code}
-[ RECORD 1 
]-----------+-----------------------------------------------------------------------------------------------
gid                     | 1
class                   | Don't Play
success                 | t
cat_n_levels            | {2,2}
cat_levels_in_text      | {c,a,True,False}
oob_error               | 72.8680555555556
oob_var_importance      | {0,0,0,11.28,0}
impurity_var_importance | 
{13.3333332067,0,23.33333295978,26.66666536564,16.66666634414}
-[ RECORD 2 
]-----------+-----------------------------------------------------------------------------------------------
gid                     | 2
class                   | Play
success                 | t
cat_n_levels            | {2,2,2}
cat_levels_in_text      | {c,a,b,d,False,True}
oob_error               | 27.6126543209877
oob_var_importance      | 
{0,0.682,0.682,11.618,14.3408287037037,0.485124999999998}
impurity_var_importance | 
{1.75749418342542,6.49425472528,6.49425472528,17.0265458048514,40.89746752486,27.329981237604}
{code}

We will have the related issue
https://issues.apache.org/jira/browse/MADLIB-1258
to address before we can release


> RF/DT: Grouping might give incorrect results if 1 group eliminates a 
> categorical variable
> -----------------------------------------------------------------------------------------
>
>                 Key: MADLIB-1254
>                 URL: https://issues.apache.org/jira/browse/MADLIB-1254
>             Project: Apache MADlib
>          Issue Type: Bug
>          Components: Module: Decision Tree
>            Reporter: Rahul Iyer
>            Priority: Major
>             Fix For: v1.15
>
>
> If {{forest_train}} is run with grouping enabled and if one of the groups has 
> a categorical feature with just single level, then the categorical feature is 
> eliminated for that group. If other groups retain that feature, then the 
> output of impurity_var_importance is incorrect for the group in question. 
> There could be other ramifications related to this as well. 
> {code:java}
> DROP TABLE IF EXISTS dt_golf CASCADE;
> CREATE TABLE dt_golf (
>     id integer NOT NULL,
>     "OUTLOOK" text,
>     temperature double precision,
>     humidity double precision,
>     "Cont_features" double precision[],
>     cat_features text[],
>     windy boolean,
>     class text
> ) ;
> INSERT INTO dt_golf 
> (id,"OUTLOOK",temperature,humidity,"Cont_features",cat_features, windy,class) 
> VALUES
> (1, 'sunny', 85, 85,ARRAY[85, 85], ARRAY['a', 'b'], false, 'Don''t Play'),
> (2, 'sunny', 80, 90, ARRAY[80, 90], ARRAY['a', 'b'], true, 'Don''t Play'),
> (3, 'overcast', 83, 78, ARRAY[83, 78], ARRAY['a', 'b'], false, 'Play'),
> (4, 'rain', 70, NULL, ARRAY[70, 96], ARRAY['a', 'b'], false, 'Play'),
> (5, 'rain', 68, 80, ARRAY[68, 80], ARRAY['a', 'b'], false, 'Play'),
> (6, 'rain', NULL, 70, ARRAY[65, 70], ARRAY['a', 'b'], true, 'Don''t Play'),
> (7, 'overcast', 64, 65, ARRAY[64, 65], ARRAY['c', 'b'], NULL , 'Play'),
> (8, 'sunny', 72, 95, ARRAY[72, 95], ARRAY['a', 'b'], false, 'Don''t Play'),
> (9, 'sunny', 69, 70, ARRAY[69, 70], ARRAY['a', 'b'], false, 'Play'),
> (10, 'rain', 75, 80, ARRAY[75, 80], ARRAY['a', 'b'], false, 'Play'),
> (11, 'sunny', 75, 70, ARRAY[75, 70], ARRAY['a', 'd'], true, 'Play'),
> (12, 'overcast', 72, 90, ARRAY[72, 90], ARRAY['c', 'b'], NULL, 'Play'),
> (13, 'overcast', 81, 75, ARRAY[81, 75], ARRAY['a', 'b'], false, 'Play'),
> (15, NULL, 81, 75, ARRAY[81, 75], ARRAY['a', 'b'], false, 'Play'),
> (16, 'overcast', NULL, 75, ARRAY[81, 75], ARRAY['a', 'd'], false, 'Play'),
> (14, 'rain', 71, 80, ARRAY[71, 80], ARRAY['c', 'b'], true, 'Don''t Play');
> DROP TABLE IF EXISTS train_output, train_output_summary, train_output_group, 
> train_output_poisson_count;
> SELECT forest_train(
>                   'dt_golf',         -- source table
>                   'train_output',    -- output model table
>                   'id',              -- id column
>                   'temperature::double precision',           -- response
>                   'humidity, cat_features, windy, "Cont_features"',   -- 
> features
>                   NULL,        -- exclude columns
>                   'class',          -- grouping
>                   5,                -- num of trees
>                   NULL,                 -- num of random features
>                   TRUE,     -- importance
>                   20,         -- num_permutations
>                   10,       -- max depth
>                   1,        -- min split
>                   1,        -- min bucket
>                   3,        -- number of bins per continuous variable
>                   'max_surrogates = 2 ',
>                   FALSE
>                   );
> \x on
> SELECT * from train_output_summary;
> SELECT * from train_output_group;
> {code}
> Results:
> {code:java}
> SELECT * from train_output_group;
> -[ RECORD 1 
> ]-----------+-----------------------------------------------------------------------------
> gid                     | 1
> class                   | Don't Play
> success                 | t
> cat_n_levels            | {2,2,2}
> cat_levels_in_text      | {c,a,True,False,c,a}
> oob_error               | 92.5335905349795
> oob_var_importance      | {10.725,10.725,10.725,7.605,10.725,0}
> impurity_var_importance | 
> {8.33148348160485,0,0,19.9999998625892,19.9999998625892,11.6685163809844}
> -[ RECORD 2 
> ]-----------+-----------------------------------------------------------------------------
> gid                     | 2
> class                   | Play
> success                 | t
> cat_n_levels            | {2,2}
> cat_levels_in_text      | {b,d,False,True}
> oob_error               | 43.0244073645405
> oob_var_importance      | 
> {1.06581410364015e-15,1.06581410364015e-15,2.1326171875,16.019375,10.570875}
> impurity_var_importance | 
> {0,0,0,37.8304000437732,38.4881698525677,23.6814277291654}
> {code}
> Note that the {{impurity_var_importance}} for {{gid=2}} has length 6 while 
> the {{oob_var_importance}} correctly has 5.



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to