[ https://issues.apache.org/jira/browse/MADLIB-1359?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16908309#comment-16908309 ]
Frank McQuillan commented on MADLIB-1359: ----------------------------------------- {code} DROP TABLE IF EXISTS iris_predict_byom; SELECT madlib.madlib_keras_predict_byom('model_arch_library', -- model arch table 1, -- model arch id 'iris_test', -- test_table 'id', -- id column 'attributes', -- independent var 'iris_predict_byom', -- output table 'response', -- prediction type 0, -- gpus per host ARRAY['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], -- class values 1.0 -- normalizing const ); SELECT * FROM iris_predict_byom ORDER BY id; id | estimated_dependent_var -----+------------------------- 1 | Iris-setosa 18 | Iris-setosa 20 | Iris-setosa 24 | Iris-setosa 26 | Iris-setosa 27 | Iris-setosa 28 | Iris-setosa 30 | Iris-setosa 32 | Iris-setosa 46 | Iris-setosa 47 | Iris-setosa 51 | Iris-versicolor 52 | Iris-versicolor 59 | Iris-versicolor 60 | Iris-versicolor 61 | Iris-versicolor 64 | Iris-virginica 65 | Iris-versicolor 66 | Iris-versicolor 68 | Iris-versicolor 76 | Iris-versicolor 78 | Iris-virginica 81 | Iris-versicolor 84 | Iris-virginica 91 | Iris-virginica 98 | Iris-versicolor 101 | Iris-virginica 125 | Iris-virginica 130 | Iris-virginica 133 | Iris-virginica (30 rows) {code} {code} DROP TABLE IF EXISTS iris_predict_byom; SELECT madlib.madlib_keras_predict_byom('model_arch_library', -- model arch table 1, -- model arch id 'iris_test', -- test_table 'id', -- id column 'attributes', -- independent var 'iris_predict_byom' -- output table ); SELECT * FROM iris_predict_byom ORDER BY id; id | estimated_dependent_var -----+------------------------- 1 | 0 18 | 0 20 | 0 24 | 0 26 | 0 27 | 0 28 | 0 30 | 0 32 | 0 46 | 0 47 | 0 51 | 1 52 | 1 59 | 1 60 | 1 61 | 1 64 | 2 65 | 1 66 | 1 68 | 1 76 | 1 78 | 2 81 | 1 84 | 2 91 | 2 98 | 1 101 | 2 125 | 2 130 | 2 133 | 2 (30 rows) {code} {code} DROP TABLE IF EXISTS iris_predict_byom; SELECT madlib.madlib_keras_predict_byom('model_arch_library', -- model arch table 1, -- model arch id 'iris_test', -- test_table 'id', -- id column 'attributes', -- independent var 'iris_predict_byom', -- output table 'prob', -- prediction type 0, -- gpus per host ARRAY['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], -- class values 1.0 -- normalizing const ); SELECT * FROM iris_predict_byom ORDER BY id; id | prob_Iris-setosa | prob_Iris-versicolor | prob_Iris-virginica -----+------------------+----------------------+--------------------- 1 | 0.97138274 | 0.025224565 | 0.0033927 18 | 0.97197604 | 0.024838978 | 0.0031850387 20 | 0.97796774 | 0.019109258 | 0.0029231268 24 | 0.934748 | 0.0579517 | 0.0073003164 26 | 0.91712886 | 0.073093824 | 0.009777269 27 | 0.9523869 | 0.041732516 | 0.0058805626 28 | 0.96662986 | 0.02945035 | 0.003919784 30 | 0.93458587 | 0.05538236 | 0.010031806 32 | 0.9622423 | 0.034357797 | 0.003399921 46 | 0.9392291 | 0.053777166 | 0.00699376 47 | 0.97205293 | 0.02391402 | 0.0040329834 51 | 0.047419224 | 0.6513861 | 0.3011947 52 | 0.05720685 | 0.63326347 | 0.3095297 59 | 0.036483206 | 0.56527764 | 0.39823908 60 | 0.06647456 | 0.56254363 | 0.37098172 61 | 0.0603336 | 0.52332056 | 0.4163458 64 | 0.027475674 | 0.44579932 | 0.52672493 65 | 0.15933721 | 0.65316516 | 0.18749759 66 | 0.06711763 | 0.67913276 | 0.2537496 68 | 0.052709933 | 0.57759637 | 0.36969376 76 | 0.05880547 | 0.6522814 | 0.2889131 78 | 0.022371378 | 0.44756117 | 0.53006744 81 | 0.061154667 | 0.5778742 | 0.36097106 84 | 0.010076913 | 0.2382943 | 0.7516287 91 | 0.028012346 | 0.39615962 | 0.5758281 98 | 0.05417811 | 0.61200374 | 0.33381817 101 | 0.0039304136 | 0.14118098 | 0.8548886 125 | 0.008380276 | 0.25236616 | 0.7392536 130 | 0.0060693217 | 0.23190267 | 0.76202804 133 | 0.0049104625 | 0.16266319 | 0.8324263 (30 rows) {code} {code} DROP TABLE IF EXISTS iris_predict_byom; SELECT madlib.madlib_keras_predict_byom('model_arch_library', -- model arch table 1, -- model arch id 'iris_test', -- test_table 'id', -- id column 'attributes', -- independent var 'iris_predict_byom', -- output table 'prob' -- prediction type ); SELECT * FROM iris_predict_byom ORDER BY id; id | prob -----+--------------------------------------- 1 | {0.97138274,0.025224565,0.0033927} 18 | {0.97197604,0.024838978,0.0031850387} 20 | {0.97796774,0.019109258,0.0029231268} 24 | {0.934748,0.0579517,0.0073003164} 26 | {0.91712886,0.073093824,0.009777269} 27 | {0.9523869,0.041732516,0.0058805626} 28 | {0.96662986,0.02945035,0.003919784} 30 | {0.93458587,0.05538236,0.010031806} 32 | {0.9622423,0.034357797,0.003399921} 46 | {0.9392291,0.053777166,0.00699376} 47 | {0.97205293,0.02391402,0.0040329834} 51 | {0.047419224,0.6513861,0.3011947} 52 | {0.05720685,0.63326347,0.3095297} 59 | {0.036483206,0.56527764,0.39823908} 60 | {0.06647456,0.56254363,0.37098172} 61 | {0.0603336,0.52332056,0.4163458} 64 | {0.027475674,0.44579932,0.52672493} 65 | {0.15933721,0.65316516,0.18749759} 66 | {0.06711763,0.67913276,0.2537496} 68 | {0.052709933,0.57759637,0.36969376} 76 | {0.05880547,0.6522814,0.2889131} 78 | {0.022371378,0.44756117,0.53006744} 81 | {0.061154667,0.5778742,0.36097106} 84 | {0.010076913,0.2382943,0.7516287} 91 | {0.028012346,0.39615962,0.5758281} 98 | {0.05417811,0.61200374,0.33381817} 101 | {0.0039304136,0.14118098,0.8548886} 125 | {0.008380276,0.25236616,0.7392536} 130 | {0.0060693217,0.23190267,0.76202804} 133 | {0.0049104625,0.16266319,0.8324263} (30 rows) {code} LGTM > Support DL predict without training on MADlib > --------------------------------------------- > > Key: MADLIB-1359 > URL: https://issues.apache.org/jira/browse/MADLIB-1359 > Project: Apache MADlib > Issue Type: New Feature > Components: Module: Neural Networks > Reporter: Frank McQuillan > Priority: Major > Fix For: v1.17 > > > Story > As a data scientist, > I want to download a model architecture and weights from an external source > and run predict with MADlib (without training on MADlib) > so that > I can use models designed trained elsewhere without having to do all that > work myself > Acceptance > 1. Download a simple model for MNIST and load into model arch table using > helper functions. Run predict on test examples and get predictions. > 2. Same as #1 with Places 10 (?) using VGG16 weights. -- This message was sent by Atlassian JIRA (v7.6.14#76016)