[ https://issues.apache.org/jira/browse/MADLIB-1384?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Frank McQuillan closed MADLIB-1384. ----------------------------------- Resolution: Fixed https://github.com/apache/madlib/pull/448 > Change default num_components for SVM to max(100, 2*num_features) > ----------------------------------------------------------------- > > Key: MADLIB-1384 > URL: https://issues.apache.org/jira/browse/MADLIB-1384 > Project: Apache MADlib > Issue Type: Improvement > Components: Module: Support Vector Machines > Reporter: Frank McQuillan > Priority: Major > Fix For: v1.17 > > > Currently > http://madlib.apache.org/docs/latest/group__grp__svm.html#kernel_params > says > {code} > n_components > Default: 2*num_features. The dimensionality of the transformed feature space. > A larger value lowers the variance of the estimate of the kernel but requires > more memory and takes longer to train. > {code} > but this produces poor decision boundaries for small num_features. I suggest > we change the default to > {code} > n_components > Default: max(100, 2*num_features). The dimensionality of the transformed > feature space. A larger value lowers the variance of the estimate of the > kernel but requires more memory and takes longer to train. > {code} -- This message was sent by Atlassian Jira (v8.3.4#803005)