[ https://issues.apache.org/jira/browse/MXNET-60?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16394966#comment-16394966 ]
Marco de Abreu commented on MXNET-60: ------------------------------------- I think this only happens on cent os 7, but let me double check. Da said that this is a known error. > MXNET_MKLDNN_DEBUG=1 produces errors > ------------------------------------ > > Key: MXNET-60 > URL: https://issues.apache.org/jira/browse/MXNET-60 > Project: Apache MXNet > Issue Type: Bug > Reporter: Marco de Abreu > Priority: Major > > [http://jenkins.mxnet-ci.amazon-ml.com/blue/organizations/jenkins/incubator-mxnet/detail/PR-9995/32/pipeline/483] > Setting ``MXNET_MKLDNN_DEBUG=1`` as environment variable will produce the > following error in tests. This happens across all configurations and seeds. I > do not think that this is a test failure. > > {code:java} > ====================================================================== > ERROR: test_gluon_model_zoo.test_models > ---------------------------------------------------------------------- > Traceback (most recent call last): > File "/usr/local/lib/python2.7/dist-packages/nose/case.py", line 197, in > runTest > self.test(*self.arg) > File "/work/mxnet/tests/python/unittest/common.py", line 157, in test_new > orig_test(*args, **kwargs) > File "/work/mxnet/tests/python/unittest/test_gluon_model_zoo.py", line 50, in > test_models > model(mx.nd.random.uniform(shape=data_shape)).wait_to_read() > File "/work/mxnet/python/mxnet/ndarray/ndarray.py", line 1650, in wait_to_read > check_call(_LIB.MXNDArrayWaitToRead(self.handle)) > File "/work/mxnet/python/mxnet/base.py", line 149, in check_call > raise MXNetError(py_str(_LIB.MXGetLastError())) > MXNetError: [17:10:12] src/operator/nn/mkldnn/mkldnn_base.cc:395: Check > failed: similar > Stack trace returned 10 entries: > [bt] (0) > /work/mxnet/python/mxnet/../../lib/libmxnet.so(dmlc::StackTrace[abi:cxx11]()+0x5b) > [0x7f06ccf3745b] > [bt] (1) > /work/mxnet/python/mxnet/../../lib/libmxnet.so(dmlc::LogMessageFatal::~LogMessageFatal()+0x28) > [0x7f06ccf38478] > [bt] (2) > /work/mxnet/python/mxnet/../../lib/libmxnet.so(mxnet::OpCheck::Run(std::function<void > (nnvm::NodeAttrs const&, mxnet::OpContext const&, std::vector<mxnet::TBlob, > std::allocator<mxnet::TBlob> > const&, std::vector<mxnet::OpReqType, > std::allocator<mxnet::OpReqType> > const&, std::vector<mxnet::TBlob, > std::allocator<mxnet::TBlob> > const&)>, nnvm::NodeAttrs const&, > mxnet::OpContext const&, std::vector<mxnet::NDArray, > std::allocator<mxnet::NDArray> > const&, std::vector<mxnet::OpReqType, > std::allocator<mxnet::OpReqType> > const&, std::vector<mxnet::NDArray, > std::allocator<mxnet::NDArray> > const&)+0x3ca8) [0x7f06ccf54198] > [bt] (3) /work/mxnet/python/mxnet/../../lib/libmxnet.so(+0x2a910d9) > [0x7f06cf55a0d9] > [bt] (4) > /work/mxnet/python/mxnet/../../lib/libmxnet.so(std::_Function_handler<void > (mxnet::RunContext), mxnet::imperative::PushFComputeEx(std::function<void > (nnvm::NodeAttrs const&, mxnet::OpContext const&, std::vector<mxnet::NDArray, > std::allocator<mxnet::NDArray> > const&, std::vector<mxnet::OpReqType, > std::allocator<mxnet::OpReqType> > const&, std::vector<mxnet::NDArray, > std::allocator<mxnet::NDArray> > const&)> const&, nnvm::Op const*, > nnvm::NodeAttrs const&, mxnet::Context const&, > std::vector<mxnet::engine::Var*, std::allocator<mxnet::engine::Var*> > > const&, std::vector<mxnet::engine::Var*, std::allocator<mxnet::engine::Var*> > > const&, std::vector<mxnet::Resource, std::allocator<mxnet::Resource> > > const&, std::vector<mxnet::NDArray*, std::allocator<mxnet::NDArray*> > > const&, std::vector<mxnet::NDArray*, std::allocator<mxnet::NDArray*> > > const&, std::vector<mxnet::OpReqType, std::allocator<mxnet::OpReqType> > > const&):: > {lambda(mxnet::RunContext)#1} > >::_M_invoke(std::_Any_data const&, mxnet::RunContext&&)+0x7c) > >[0x7f06cf77608c] > [bt] (5) /work/mxnet/python/mxnet/../../lib/libmxnet.so(+0x3148fdb) > [0x7f06cfc11fdb] > [bt] (6) > /work/mxnet/python/mxnet/../../lib/libmxnet.so(mxnet::engine::ThreadedEngine::ExecuteOprBlock(mxnet::RunContext, > mxnet::engine::OprBlock*)+0xcb5) [0x7f06cfc0b1a5] > [bt] (7) > /work/mxnet/python/mxnet/../../lib/libmxnet.so(std::_Function_handler<void > (std::shared_ptr<dmlc::ManualEvent>), > mxnet::engine::ThreadedEnginePerDevice::PushToExecute(mxnet::engine::OprBlock*, > bool):: > {lambda()#1} > ::operator()() const:: > {lambda(std::shared_ptr<dmlc::ManualEvent>)#1} > >::_M_invoke(std::_Any_data const&, > >std::shared_ptr<dmlc::ManualEvent>&&)+0xd9) [0x7f06cfc1d309] > [bt] (8) > /work/mxnet/python/mxnet/../../lib/libmxnet.so(std::thread::_Impl<std::_Bind_simple<std::function<void > (std::shared_ptr<dmlc::ManualEvent>)> (std::shared_ptr<dmlc::ManualEvent>)> > >::_M_run()+0x4a) [0x7f06cfc1c43a] > [bt] (9) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xb8c80) [0x7f06d7ca4c80] > -------------------- >> begin captured stdout << --------------------- > ResNetV1( > (features): HybridSequential( > (0): Conv2D(None -> 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): MaxPool2D(size=(3, 3), stride=(2, 2), padding=(1, 1), ceil_mode=False) > (4): HybridSequential( > (0): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (1): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > ) > (5): HybridSequential( > (0): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(64 -> 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > (downsample): HybridSequential( > (0): Conv2D(64 -> 128, kernel_size=(1, 1), stride=(2, 2), bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (1): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > ) > (6): HybridSequential( > (0): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(128 -> 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > (downsample): HybridSequential( > (0): Conv2D(128 -> 256, kernel_size=(1, 1), stride=(2, 2), bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (1): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > ) > (7): HybridSequential( > (0): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(256 -> 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > (downsample): HybridSequential( > (0): Conv2D(256 -> 512, kernel_size=(1, 1), stride=(2, 2), bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (1): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > ) > (8): GlobalAvgPool2D(size=(1, 1), stride=(1, 1), padding=(0, 0), > ceil_mode=True) > ) > (output): Dense(512 -> 1000, linear) > ) > ResNetV1( > (features): HybridSequential( > (0): Conv2D(None -> 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): MaxPool2D(size=(3, 3), stride=(2, 2), padding=(1, 1), ceil_mode=False) > (4): HybridSequential( > (0): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (1): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (2): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > ) > (5): HybridSequential( > (0): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(64 -> 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > (downsample): HybridSequential( > (0): Conv2D(64 -> 128, kernel_size=(1, 1), stride=(2, 2), bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (1): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (2): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (3): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > ) > (6): HybridSequential( > (0): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(128 -> 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > (downsample): HybridSequential( > (0): Conv2D(128 -> 256, kernel_size=(1, 1), stride=(2, 2), bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (1): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (2): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (3): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (4): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (5): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > ) > (7): HybridSequential( > (0): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(256 -> 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > (downsample): HybridSequential( > (0): Conv2D(256 -> 512, kernel_size=(1, 1), stride=(2, 2), bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (1): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > (2): BasicBlockV1( > (body): HybridSequential( > (0): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > (2): Activation(relu) > (3): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), > bias=False) > (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, > momentum=0.9, axis=1, in_channels=None) > ) > ) > ) > (8): GlobalAvgPool2D(size=(1, 1), stride=(1, 1), padding=(0, 0), > ceil_mode=True) > ) > (output): Dense(512 -> 1000, linear) > ) > --------------------- >> end captured stdout << ---------------------- > -------------------- >> begin captured logging << -------------------- > common: INFO: Setting module np/mx/python random seeds, use > MXNET_MODULE_SEED=1825457337 to reproduce. > common: INFO: Setting test np/mx/python random seeds, use > MXNET_TEST_SEED=1579343143 to reproduce. > --------------------- >> end captured logging << --------------------- > {code} -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@mxnet.apache.org For additional commands, e-mail: issues-h...@mxnet.apache.org