[ 
https://issues.apache.org/jira/browse/MXNET-60?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16394966#comment-16394966
 ] 

Marco de Abreu commented on MXNET-60:
-------------------------------------

I think this only happens on cent os 7, but let me double check. Da said
that this is a known error.




> MXNET_MKLDNN_DEBUG=1 produces errors
> ------------------------------------
>
>                 Key: MXNET-60
>                 URL: https://issues.apache.org/jira/browse/MXNET-60
>             Project: Apache MXNet
>          Issue Type: Bug
>            Reporter: Marco de Abreu
>            Priority: Major
>
> [http://jenkins.mxnet-ci.amazon-ml.com/blue/organizations/jenkins/incubator-mxnet/detail/PR-9995/32/pipeline/483]
> Setting ``MXNET_MKLDNN_DEBUG=1`` as environment variable will produce the 
> following error in tests. This happens across all configurations and seeds. I 
> do not think that this is a test failure.
>  
> {code:java}
> ======================================================================
> ERROR: test_gluon_model_zoo.test_models
> ----------------------------------------------------------------------
> Traceback (most recent call last):
> File "/usr/local/lib/python2.7/dist-packages/nose/case.py", line 197, in 
> runTest
> self.test(*self.arg)
> File "/work/mxnet/tests/python/unittest/common.py", line 157, in test_new
> orig_test(*args, **kwargs)
> File "/work/mxnet/tests/python/unittest/test_gluon_model_zoo.py", line 50, in 
> test_models
> model(mx.nd.random.uniform(shape=data_shape)).wait_to_read()
> File "/work/mxnet/python/mxnet/ndarray/ndarray.py", line 1650, in wait_to_read
> check_call(_LIB.MXNDArrayWaitToRead(self.handle))
> File "/work/mxnet/python/mxnet/base.py", line 149, in check_call
> raise MXNetError(py_str(_LIB.MXGetLastError()))
> MXNetError: [17:10:12] src/operator/nn/mkldnn/mkldnn_base.cc:395: Check 
> failed: similar
> Stack trace returned 10 entries:
> [bt] (0) 
> /work/mxnet/python/mxnet/../../lib/libmxnet.so(dmlc::StackTrace[abi:cxx11]()+0x5b)
>  [0x7f06ccf3745b]
> [bt] (1) 
> /work/mxnet/python/mxnet/../../lib/libmxnet.so(dmlc::LogMessageFatal::~LogMessageFatal()+0x28)
>  [0x7f06ccf38478]
> [bt] (2) 
> /work/mxnet/python/mxnet/../../lib/libmxnet.so(mxnet::OpCheck::Run(std::function<void
>  (nnvm::NodeAttrs const&, mxnet::OpContext const&, std::vector<mxnet::TBlob, 
> std::allocator<mxnet::TBlob> > const&, std::vector<mxnet::OpReqType, 
> std::allocator<mxnet::OpReqType> > const&, std::vector<mxnet::TBlob, 
> std::allocator<mxnet::TBlob> > const&)>, nnvm::NodeAttrs const&, 
> mxnet::OpContext const&, std::vector<mxnet::NDArray, 
> std::allocator<mxnet::NDArray> > const&, std::vector<mxnet::OpReqType, 
> std::allocator<mxnet::OpReqType> > const&, std::vector<mxnet::NDArray, 
> std::allocator<mxnet::NDArray> > const&)+0x3ca8) [0x7f06ccf54198]
> [bt] (3) /work/mxnet/python/mxnet/../../lib/libmxnet.so(+0x2a910d9) 
> [0x7f06cf55a0d9]
> [bt] (4) 
> /work/mxnet/python/mxnet/../../lib/libmxnet.so(std::_Function_handler<void 
> (mxnet::RunContext), mxnet::imperative::PushFComputeEx(std::function<void 
> (nnvm::NodeAttrs const&, mxnet::OpContext const&, std::vector<mxnet::NDArray, 
> std::allocator<mxnet::NDArray> > const&, std::vector<mxnet::OpReqType, 
> std::allocator<mxnet::OpReqType> > const&, std::vector<mxnet::NDArray, 
> std::allocator<mxnet::NDArray> > const&)> const&, nnvm::Op const*, 
> nnvm::NodeAttrs const&, mxnet::Context const&, 
> std::vector<mxnet::engine::Var*, std::allocator<mxnet::engine::Var*> > 
> const&, std::vector<mxnet::engine::Var*, std::allocator<mxnet::engine::Var*> 
> > const&, std::vector<mxnet::Resource, std::allocator<mxnet::Resource> > 
> const&, std::vector<mxnet::NDArray*, std::allocator<mxnet::NDArray*> > 
> const&, std::vector<mxnet::NDArray*, std::allocator<mxnet::NDArray*> > 
> const&, std::vector<mxnet::OpReqType, std::allocator<mxnet::OpReqType> > 
> const&)::
> {lambda(mxnet::RunContext)#1}
> >::_M_invoke(std::_Any_data const&, mxnet::RunContext&&)+0x7c) 
> >[0x7f06cf77608c]
> [bt] (5) /work/mxnet/python/mxnet/../../lib/libmxnet.so(+0x3148fdb) 
> [0x7f06cfc11fdb]
> [bt] (6) 
> /work/mxnet/python/mxnet/../../lib/libmxnet.so(mxnet::engine::ThreadedEngine::ExecuteOprBlock(mxnet::RunContext,
>  mxnet::engine::OprBlock*)+0xcb5) [0x7f06cfc0b1a5]
> [bt] (7) 
> /work/mxnet/python/mxnet/../../lib/libmxnet.so(std::_Function_handler<void 
> (std::shared_ptr<dmlc::ManualEvent>), 
> mxnet::engine::ThreadedEnginePerDevice::PushToExecute(mxnet::engine::OprBlock*,
>  bool)::
> {lambda()#1}
> ::operator()() const::
> {lambda(std::shared_ptr<dmlc::ManualEvent>)#1}
> >::_M_invoke(std::_Any_data const&, 
> >std::shared_ptr<dmlc::ManualEvent>&&)+0xd9) [0x7f06cfc1d309]
> [bt] (8) 
> /work/mxnet/python/mxnet/../../lib/libmxnet.so(std::thread::_Impl<std::_Bind_simple<std::function<void
>  (std::shared_ptr<dmlc::ManualEvent>)> (std::shared_ptr<dmlc::ManualEvent>)> 
> >::_M_run()+0x4a) [0x7f06cfc1c43a]
> [bt] (9) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xb8c80) [0x7f06d7ca4c80]
> -------------------- >> begin captured stdout << ---------------------
> ResNetV1(
> (features): HybridSequential(
> (0): Conv2D(None -> 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): MaxPool2D(size=(3, 3), stride=(2, 2), padding=(1, 1), ceil_mode=False)
> (4): HybridSequential(
> (0): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (1): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> )
> (5): HybridSequential(
> (0): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(64 -> 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> (downsample): HybridSequential(
> (0): Conv2D(64 -> 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (1): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> )
> (6): HybridSequential(
> (0): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(128 -> 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> (downsample): HybridSequential(
> (0): Conv2D(128 -> 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (1): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> )
> (7): HybridSequential(
> (0): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(256 -> 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> (downsample): HybridSequential(
> (0): Conv2D(256 -> 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (1): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> )
> (8): GlobalAvgPool2D(size=(1, 1), stride=(1, 1), padding=(0, 0), 
> ceil_mode=True)
> )
> (output): Dense(512 -> 1000, linear)
> )
> ResNetV1(
> (features): HybridSequential(
> (0): Conv2D(None -> 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): MaxPool2D(size=(3, 3), stride=(2, 2), padding=(1, 1), ceil_mode=False)
> (4): HybridSequential(
> (0): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (1): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (2): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> )
> (5): HybridSequential(
> (0): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(64 -> 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> (downsample): HybridSequential(
> (0): Conv2D(64 -> 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (1): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (2): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (3): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(128 -> 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> )
> (6): HybridSequential(
> (0): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(128 -> 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> (downsample): HybridSequential(
> (0): Conv2D(128 -> 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (1): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (2): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (3): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (4): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (5): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(256 -> 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> )
> (7): HybridSequential(
> (0): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(256 -> 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> (downsample): HybridSequential(
> (0): Conv2D(256 -> 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (1): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> (2): BasicBlockV1(
> (body): HybridSequential(
> (0): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (1): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> (2): Activation(relu)
> (3): Conv2D(512 -> 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 
> bias=False)
> (4): BatchNorm(fix_gamma=False, use_global_stats=False, eps=1e-05, 
> momentum=0.9, axis=1, in_channels=None)
> )
> )
> )
> (8): GlobalAvgPool2D(size=(1, 1), stride=(1, 1), padding=(0, 0), 
> ceil_mode=True)
> )
> (output): Dense(512 -> 1000, linear)
> )
> --------------------- >> end captured stdout << ----------------------
> -------------------- >> begin captured logging << --------------------
> common: INFO: Setting module np/mx/python random seeds, use 
> MXNET_MODULE_SEED=1825457337 to reproduce.
> common: INFO: Setting test np/mx/python random seeds, use 
> MXNET_TEST_SEED=1579343143 to reproduce.
> --------------------- >> end captured logging << ---------------------
> {code}



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@mxnet.apache.org
For additional commands, e-mail: issues-h...@mxnet.apache.org

Reply via email to