[ https://issues.apache.org/jira/browse/MXNET-376?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16535149#comment-16535149 ]
Anirudh Acharya commented on MXNET-376: --------------------------------------- Currently hardmax is accomplished using existing mxnet operators. For example - {code:java} # Compute Hardmax with axis=1 x = np.random.rand(2,3,4) xn = mx.nd.array(x) xn_r = mx.nd.reshape(xn, shape=(2,12)) xn_e = mx.nd.eye(xn_r.shape[1], dtype=x.dtype)[mx.nd.argmax(xn_r, axis=1)] hardmax_output = mx.nd.reshape(xn_e, shape=xn.shape) print(hardmax_output) {code} But a direct hardmax implementation would be more convenient and useful for users who would want to build their networks with mxnet. > Hardmax > ------- > > Key: MXNET-376 > URL: https://issues.apache.org/jira/browse/MXNET-376 > Project: Apache MXNet > Issue Type: Sub-task > Reporter: Hao Jin > Priority: Major > -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@mxnet.apache.org For additional commands, e-mail: issues-h...@mxnet.apache.org