chinakook edited a comment on issue #19649:
URL: 
https://github.com/apache/incubator-mxnet/issues/19649#issuecomment-751424572


   The result also varies in mxnet_cu110-2.0.0b20201226 
   
   Result 1 on RTX 3090 GPU on mxnet_cu110-2.0.0b20201226
   ```
      1.41821623e+00 -6.14694595e-01 -1.21822190e+00  1.47472918e+00
      1.08678900e-01 -1.53905892e+00 -2.19664723e-01  9.48607504e-01
      9.76179004e-01  1.70066428e+00  8.15666854e-01 -1.23275781e+00
      1.59943473e+00  6.92619503e-01 -1.52998209e+00 -1.63329318e-01
     -7.86948949e-02  2.69214898e-01 -6.79625511e-01  1.63082540e-01
      1.30359614e+00  3.54878873e-01  3.44506621e-01 -1.63622832e+00
     -1.83121693e+00 -2.71499276e+00 -1.90867770e+00 -1.56530845e+00
     -2.34865284e+00 -8.75126600e-01 -1.44264027e-02  2.31574321e+00
   
   ```
   
   Result 2 on RTX 3090 GPU on mxnet_cu110-2.0.0b20201226
   ```
      1.41812336e+00 -6.14903927e-01 -1.21819293e+00  1.47481430e+00
      1.08835243e-01 -1.53912401e+00 -2.19649285e-01  9.48447049e-01
      9.76122022e-01  1.70034528e+00  8.15561593e-01 -1.23293483e+00
      1.59933603e+00  6.92907691e-01 -1.53025889e+00 -1.63300052e-01
     -7.87986293e-02  2.69500673e-01 -6.79565012e-01  1.62798882e-01
      1.30361140e+00  3.54955018e-01  3.44288290e-01 -1.63627052e+00
     -1.83101904e+00 -2.71485925e+00 -1.90862215e+00 -1.56534243e+00
     -2.34861803e+00 -8.75208020e-01 -1.46629252e-02  2.31575775e+00
   ```
   
   Test script for mxnet 2.0.0 master, use resent18_v1 to test between the 
results on cpu and gpu to address the problem. Sometimes It will get the same 
results, so you need to run many times to find the different results.
   ```python
   # Licensed to the Apache Software Foundation (ASF) under one
   # or more contributor license agreements.  See the NOTICE file
   # distributed with this work for additional information
   # regarding copyright ownership.  The ASF licenses this file
   # to you under the Apache License, Version 2.0 (the
   # "License"); you may not use this file except in compliance
   # with the License.  You may obtain a copy of the License at
   #
   #   http://www.apache.org/licenses/LICENSE-2.0
   #
   # Unless required by applicable law or agreed to in writing,
   # software distributed under the License is distributed on an
   # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
   # KIND, either express or implied.  See the License for the
   # specific language governing permissions and limitations
   # under the License.
   
   # coding: utf-8
   # pylint: disable= 
arguments-differ,unused-argument,missing-docstring,too-many-lines
   """ResNets, implemented in Gluon."""
   from __future__ import division
   import gluoncv as gcv
   
   __all__ = ['ResNetV1', 'ResNetV2',
              'BasicBlockV1', 'BasicBlockV2',
              'BottleneckV1', 'BottleneckV2',
              'resnet18_v1', 'resnet34_v1', 'resnet50_v1', 'resnet101_v1', 
'resnet152_v1',
              'resnet18_v2', 'resnet34_v2', 'resnet50_v2', 'resnet101_v2', 
'resnet152_v2',
              'se_resnet18_v1', 'se_resnet34_v1', 'se_resnet50_v1',
              'se_resnet101_v1', 'se_resnet152_v1',
              'se_resnet18_v2', 'se_resnet34_v2', 'se_resnet50_v2',
              'se_resnet101_v2', 'se_resnet152_v2',
              'get_resnet']
   
   from mxnet.context import cpu
   from mxnet.gluon.block import HybridBlock
   from mxnet.gluon import nn
   from mxnet.gluon.nn import BatchNorm
   from mxnet import base
   from mxnet.util import is_np_array
   
   # Helpers
   def _conv3x3(channels, stride, in_channels):
       return nn.Conv2D(channels, kernel_size=3, strides=stride, padding=1,
                        use_bias=False, in_channels=in_channels)
   
   
   # Blocks
   class BasicBlockV1(HybridBlock):
       r"""BasicBlock V1 from `"Deep Residual Learning for Image Recognition"
       <http://arxiv.org/abs/1512.03385>`_ paper.
       This is used for ResNet V1 for 18, 34 layers.
   
       Parameters
       ----------
       channels : int
           Number of output channels.
       stride : int
           Stride size.
       downsample : bool, default False
           Whether to downsample the input.
       in_channels : int, default 0
           Number of input channels. Default is 0, to infer from the graph.
       last_gamma : bool, default False
           Whether to initialize the gamma of the last BatchNorm layer in each 
bottleneck to zero.
       use_se : bool, default False
           Whether to use Squeeze-and-Excitation module
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       def __init__(self, channels, stride, downsample=False, in_channels=0,
                    last_gamma=False, use_se=False, norm_layer=BatchNorm, 
norm_kwargs=None, **kwargs):
           super(BasicBlockV1, self).__init__(**kwargs)
           self.body = nn.HybridSequential()
           self.body.add(_conv3x3(channels, stride, in_channels))
           self.body.add(norm_layer(**({} if norm_kwargs is None else 
norm_kwargs)))
           self.body.add(nn.Activation('relu'))
           self.body.add(_conv3x3(channels, 1, channels))
           if not last_gamma:
               self.body.add(norm_layer(**({} if norm_kwargs is None else 
norm_kwargs)))
           else:
               self.body.add(norm_layer(gamma_initializer='zeros',
                                        **({} if norm_kwargs is None else 
norm_kwargs)))
   
           if use_se:
               self.se = nn.HybridSequential()
               self.se.add(nn.Dense(channels // 16, use_bias=False))
               self.se.add(nn.Activation('relu'))
               self.se.add(nn.Dense(channels, use_bias=False))
               self.se.add(nn.Activation('sigmoid'))
           else:
               self.se = None
   
           if downsample:
               self.downsample = nn.HybridSequential()
               self.downsample.add(nn.Conv2D(channels, kernel_size=1, 
strides=stride,
                                             use_bias=False, 
in_channels=in_channels))
               self.downsample.add(norm_layer(**({} if norm_kwargs is None else 
norm_kwargs)))
           else:
               self.downsample = None
   
       def hybrid_forward(self, F, x):
           residual = x
   
           x = self.body(x)
   
           if self.se:
               w = F.contrib.AdaptiveAvgPooling2D(x, output_size=1)
               w = self.se(w)
               x = F.broadcast_mul(x, w.expand_dims(axis=2).expand_dims(axis=2))
   
           if self.downsample:
               residual = self.downsample(residual)
   
           act = F.npx.activation if is_np_array() else F.Activation
           x = act(residual+x, act_type='relu')
   
           return x
   
   
   class BottleneckV1(HybridBlock):
       r"""Bottleneck V1 from `"Deep Residual Learning for Image Recognition"
       <http://arxiv.org/abs/1512.03385>`_ paper.
       This is used for ResNet V1 for 50, 101, 152 layers.
   
       Parameters
       ----------
       channels : int
           Number of output channels.
       stride : int
           Stride size.
       downsample : bool, default False
           Whether to downsample the input.
       in_channels : int, default 0
           Number of input channels. Default is 0, to infer from the graph.
       last_gamma : bool, default False
           Whether to initialize the gamma of the last BatchNorm layer in each 
bottleneck to zero.
       use_se : bool, default False
           Whether to use Squeeze-and-Excitation module
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       def __init__(self, channels, stride, downsample=False, in_channels=0,
                    last_gamma=False, use_se=False, norm_layer=BatchNorm, 
norm_kwargs=None, **kwargs):
           super(BottleneckV1, self).__init__(**kwargs)
           self.body = nn.HybridSequential()
           self.body.add(nn.Conv2D(channels//4, kernel_size=1, strides=1, 
use_bias=False))
           self.body.add(norm_layer(**({} if norm_kwargs is None else 
norm_kwargs)))
           self.body.add(nn.Activation('relu'))
           self.body.add(_conv3x3(channels//4, stride, channels//4))
           self.body.add(norm_layer(**({} if norm_kwargs is None else 
norm_kwargs)))
           self.body.add(nn.Activation('relu'))
           self.body.add(nn.Conv2D(channels, kernel_size=1, strides=1, 
use_bias=False))
   
           if use_se:
               self.se = nn.HybridSequential()
               self.se.add(nn.Dense(channels // 16, use_bias=False))
               self.se.add(nn.Activation('relu'))
               self.se.add(nn.Dense(channels, use_bias=False))
               self.se.add(nn.Activation('sigmoid'))
           else:
               self.se = None
   
           if not last_gamma:
               self.body.add(norm_layer(**({} if norm_kwargs is None else 
norm_kwargs)))
           else:
               self.body.add(norm_layer(gamma_initializer='zeros',
                                        **({} if norm_kwargs is None else 
norm_kwargs)))
   
           if downsample:
               self.downsample = nn.HybridSequential()
               self.downsample.add(nn.Conv2D(channels, kernel_size=1, 
strides=stride,
                                             use_bias=False, 
in_channels=in_channels))
               self.downsample.add(norm_layer(**({} if norm_kwargs is None else 
norm_kwargs)))
           else:
               self.downsample = None
   
       def hybrid_forward(self, F, x):
           residual = x
   
           x = self.body(x)
   
           if self.se:
               w = F.contrib.AdaptiveAvgPooling2D(x, output_size=1)
               w = self.se(w)
               x = F.broadcast_mul(x, w.expand_dims(axis=2).expand_dims(axis=2))
   
           if self.downsample:
               residual = self.downsample(residual)
   
           act = F.npx.activation if is_np_array() else F.Activation
           x = act(x + residual, act_type='relu')
           return x
   
   
   class BasicBlockV2(HybridBlock):
       r"""BasicBlock V2 from
       `"Identity Mappings in Deep Residual Networks"
       <https://arxiv.org/abs/1603.05027>`_ paper.
       This is used for ResNet V2 for 18, 34 layers.
   
       Parameters
       ----------
       channels : int
           Number of output channels.
       stride : int
           Stride size.
       downsample : bool, default False
           Whether to downsample the input.
       in_channels : int, default 0
           Number of input channels. Default is 0, to infer from the graph.
       last_gamma : bool, default False
           Whether to initialize the gamma of the last BatchNorm layer in each 
bottleneck to zero.
       use_se : bool, default False
           Whether to use Squeeze-and-Excitation module
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       def __init__(self, channels, stride, downsample=False, in_channels=0,
                    last_gamma=False, use_se=False,
                    norm_layer=BatchNorm, norm_kwargs=None, **kwargs):
           super(BasicBlockV2, self).__init__(**kwargs)
           self.bn1 = norm_layer(**({} if norm_kwargs is None else norm_kwargs))
           self.conv1 = _conv3x3(channels, stride, in_channels)
           if not last_gamma:
               self.bn2 = norm_layer(**({} if norm_kwargs is None else 
norm_kwargs))
           else:
               self.bn2 = norm_layer(gamma_initializer='zeros',
                                     **({} if norm_kwargs is None else 
norm_kwargs))
           self.conv2 = _conv3x3(channels, 1, channels)
   
           if use_se:
               self.se = nn.HybridSequential()
               self.se.add(nn.Dense(channels // 16, use_bias=False))
               self.se.add(nn.Activation('relu'))
               self.se.add(nn.Dense(channels, use_bias=False))
               self.se.add(nn.Activation('sigmoid'))
           else:
               self.se = None
   
           if downsample:
               self.downsample = nn.Conv2D(channels, 1, stride, use_bias=False,
                                           in_channels=in_channels)
           else:
               self.downsample = None
   
       def hybrid_forward(self, F, x):
           residual = x
           x = self.bn1(x)
           act = F.npx.activation if is_np_array() else F.Activation
           x = act(x, act_type='relu')
           if self.downsample:
               residual = self.downsample(x)
           x = self.conv1(x)
   
           x = self.bn2(x)
           x = act(x, act_type='relu')
           x = self.conv2(x)
   
           if self.se:
               w = F.contrib.AdaptiveAvgPooling2D(x, output_size=1)
               w = self.se(w)
               x = F.broadcast_mul(x, w.expand_dims(axis=2).expand_dims(axis=2))
   
           return x + residual
   
   
   class BottleneckV2(HybridBlock):
       r"""Bottleneck V2 from
       `"Identity Mappings in Deep Residual Networks"
       <https://arxiv.org/abs/1603.05027>`_ paper.
       This is used for ResNet V2 for 50, 101, 152 layers.
   
       Parameters
       ----------
       channels : int
           Number of output channels.
       stride : int
           Stride size.
       downsample : bool, default False
           Whether to downsample the input.
       in_channels : int, default 0
           Number of input channels. Default is 0, to infer from the graph.
       last_gamma : bool, default False
           Whether to initialize the gamma of the last BatchNorm layer in each 
bottleneck to zero.
       use_se : bool, default False
           Whether to use Squeeze-and-Excitation module
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       def __init__(self, channels, stride, downsample=False, in_channels=0,
                    last_gamma=False, use_se=False, norm_layer=BatchNorm, 
norm_kwargs=None, **kwargs):
           super(BottleneckV2, self).__init__(**kwargs)
           self.bn1 = norm_layer(**({} if norm_kwargs is None else norm_kwargs))
           self.conv1 = nn.Conv2D(channels//4, kernel_size=1, strides=1, 
use_bias=False)
           self.bn2 = norm_layer(**({} if norm_kwargs is None else norm_kwargs))
           self.conv2 = _conv3x3(channels//4, stride, channels//4)
           if not last_gamma:
               self.bn3 = norm_layer(**({} if norm_kwargs is None else 
norm_kwargs))
           else:
               self.bn3 = norm_layer(gamma_initializer='zeros',
                                     **({} if norm_kwargs is None else 
norm_kwargs))
           self.conv3 = nn.Conv2D(channels, kernel_size=1, strides=1, 
use_bias=False)
   
           if use_se:
               self.se = nn.HybridSequential()
               self.se.add(nn.Dense(channels // 16, use_bias=False))
               self.se.add(nn.Activation('relu'))
               self.se.add(nn.Dense(channels, use_bias=False))
               self.se.add(nn.Activation('sigmoid'))
           else:
               self.se = None
   
           if downsample:
               self.downsample = nn.Conv2D(channels, 1, stride, use_bias=False,
                                           in_channels=in_channels)
           else:
               self.downsample = None
   
       def hybrid_forward(self, F, x):
           residual = x
           x = self.bn1(x)
           act = F.npx.activation if is_np_array() else F.Activation
           x = act(x, act_type='relu')
           if self.downsample:
               residual = self.downsample(x)
           x = self.conv1(x)
   
           x = self.bn2(x)
           x = act(x, act_type='relu')
           x = self.conv2(x)
   
           x = self.bn3(x)
           x = act(x, act_type='relu')
           x = self.conv3(x)
   
           if self.se:
               w = F.contrib.AdaptiveAvgPooling2D(x, output_size=1)
               w = self.se(w)
               x = F.broadcast_mul(x, w.expand_dims(axis=2).expand_dims(axis=2))
   
           return x + residual
   
   
   # Nets
   class ResNetV1(HybridBlock):
       r"""ResNet V1 model from
       `"Deep Residual Learning for Image Recognition"
       <http://arxiv.org/abs/1512.03385>`_ paper.
   
       Parameters
       ----------
       block : HybridBlock
           Class for the residual block. Options are BasicBlockV1, BottleneckV1.
       layers : list of int
           Numbers of layers in each block
       channels : list of int
           Numbers of channels in each block. Length should be one larger than 
layers list.
       classes : int, default 1000
           Number of classification classes.
       thumbnail : bool, default False
           Enable thumbnail.
       last_gamma : bool, default False
           Whether to initialize the gamma of the last BatchNorm layer in each 
bottleneck to zero.
       use_se : bool, default False
           Whether to use Squeeze-and-Excitation module
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       def __init__(self, block, layers, channels, classes=1000, 
thumbnail=False,
                    last_gamma=False, use_se=False, norm_layer=BatchNorm, 
norm_kwargs=None, **kwargs):
           super(ResNetV1, self).__init__(**kwargs)
           assert len(layers) == len(channels) - 1
           self.features = nn.HybridSequential()
           if thumbnail:
               self.features.add(_conv3x3(channels[0], 1, 0))
           else:
               self.features.add(nn.Conv2D(channels[0], 7, 2, 3, 
use_bias=False))
               self.features.add(norm_layer(**({} if norm_kwargs is None else 
norm_kwargs)))
               self.features.add(nn.Activation('relu'))
               self.features.add(nn.MaxPool2D(3, 2, 1))
   
           for i, num_layer in enumerate(layers):
               stride = 1 if i == 0 else 2
               self.features.add(self._make_layer(block, num_layer, 
channels[i+1],
                                                  stride, i+1, 
in_channels=channels[i],
                                                  last_gamma=last_gamma, 
use_se=use_se,
                                                  norm_layer=norm_layer, 
norm_kwargs=norm_kwargs))
           self.features.add(nn.GlobalAvgPool2D())
   
           self.output = nn.Dense(classes, in_units=channels[-1])
   
       def _make_layer(self, block, layers, channels, stride, stage_index, 
in_channels=0,
                       last_gamma=False, use_se=False, norm_layer=BatchNorm, 
norm_kwargs=None):
           layer = nn.HybridSequential()
           layer.add(block(channels, stride, channels != in_channels, 
in_channels=in_channels,
                           last_gamma=last_gamma, use_se=use_se,
                           norm_layer=norm_layer, norm_kwargs=norm_kwargs))
           for _ in range(layers-1):
               layer.add(block(channels, 1, False, in_channels=channels,
                               last_gamma=last_gamma, use_se=use_se,
                               norm_layer=norm_layer, norm_kwargs=norm_kwargs))
           return layer
   
       def hybrid_forward(self, F, x):
           x = self.features(x)
           x = self.output(x)
   
           return x
   
   
   class ResNetV2(HybridBlock):
       r"""ResNet V2 model from
       `"Identity Mappings in Deep Residual Networks"
       <https://arxiv.org/abs/1603.05027>`_ paper.
   
       Parameters
       ----------
       block : HybridBlock
           Class for the residual block. Options are BasicBlockV1, BottleneckV1.
       layers : list of int
           Numbers of layers in each block
       channels : list of int
           Numbers of channels in each block. Length should be one larger than 
layers list.
       classes : int, default 1000
           Number of classification classes.
       thumbnail : bool, default False
           Enable thumbnail.
       last_gamma : bool, default False
           Whether to initialize the gamma of the last BatchNorm layer in each 
bottleneck to zero.
       use_se : bool, default False
           Whether to use Squeeze-and-Excitation module
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       def __init__(self, block, layers, channels, classes=1000, 
thumbnail=False,
                    last_gamma=False, use_se=False, norm_layer=BatchNorm, 
norm_kwargs=None, **kwargs):
           super(ResNetV2, self).__init__(**kwargs)
           assert len(layers) == len(channels) - 1
           self.features = nn.HybridSequential()
           self.features.add(norm_layer(scale=False, center=False,
                                        **({} if norm_kwargs is None else 
norm_kwargs)))
           if thumbnail:
               self.features.add(_conv3x3(channels[0], 1, 0))
           else:
               self.features.add(nn.Conv2D(channels[0], 7, 2, 3, 
use_bias=False))
               self.features.add(norm_layer(**({} if norm_kwargs is None else 
norm_kwargs)))
               self.features.add(nn.Activation('relu'))
               self.features.add(nn.MaxPool2D(3, 2, 1))
   
           in_channels = channels[0]
           for i, num_layer in enumerate(layers):
               stride = 1 if i == 0 else 2
               self.features.add(self._make_layer(block, num_layer, 
channels[i+1],
                                                  stride, i+1, 
in_channels=in_channels,
                                                  last_gamma=last_gamma, 
use_se=use_se,
                                                  norm_layer=norm_layer, 
norm_kwargs=norm_kwargs))
               in_channels = channels[i+1]
           self.features.add(norm_layer(**({} if norm_kwargs is None else 
norm_kwargs)))
           self.features.add(nn.Activation('relu'))
           self.features.add(nn.GlobalAvgPool2D())
           self.features.add(nn.Flatten())
   
           self.output = nn.Dense(classes, in_units=in_channels)
   
       def _make_layer(self, block, layers, channels, stride, stage_index, 
in_channels=0,
                       last_gamma=False, use_se=False, norm_layer=BatchNorm, 
norm_kwargs=None):
           layer = nn.HybridSequential()
           layer.add(block(channels, stride, channels != in_channels, 
in_channels=in_channels,
                           last_gamma=last_gamma, use_se=use_se,
                           norm_layer=norm_layer, norm_kwargs=norm_kwargs))
           for _ in range(layers-1):
               layer.add(block(channels, 1, False, in_channels=channels,
                               last_gamma=last_gamma, use_se=use_se,
                               norm_layer=norm_layer, norm_kwargs=norm_kwargs))
           return layer
   
       def hybrid_forward(self, F, x):
           x = self.features(x)
           x = self.output(x)
           return x
   
   
   # Specification
   resnet_spec = {18: ('basic_block', [2, 2, 2, 2], [64, 64, 128, 256, 512]),
                  34: ('basic_block', [3, 4, 6, 3], [64, 64, 128, 256, 512]),
                  50: ('bottle_neck', [3, 4, 6, 3], [64, 256, 512, 1024, 2048]),
                  101: ('bottle_neck', [3, 4, 23, 3], [64, 256, 512, 1024, 
2048]),
                  152: ('bottle_neck', [3, 8, 36, 3], [64, 256, 512, 1024, 
2048])}
   
   resnet_net_versions = [ResNetV1, ResNetV2]
   resnet_block_versions = [{'basic_block': BasicBlockV1, 'bottle_neck': 
BottleneckV1},
                            {'basic_block': BasicBlockV2, 'bottle_neck': 
BottleneckV2}]
   
   
   # Constructor
   def get_resnet(version, num_layers, pretrained=False, ctx=cpu(),
                  root='~/.mxnet/models', use_se=False, **kwargs):
       r"""ResNet V1 model from `"Deep Residual Learning for Image Recognition"
       <http://arxiv.org/abs/1512.03385>`_ paper.
       ResNet V2 model from `"Identity Mappings in Deep Residual Networks"
       <https://arxiv.org/abs/1603.05027>`_ paper.
   
       Parameters
       ----------
       version : int
           Version of ResNet. Options are 1, 2.
       num_layers : int
           Numbers of layers. Options are 18, 34, 50, 101, 152.
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default $MXNET_HOME/models
           Location for keeping the model parameters.
       use_se : bool, default False
           Whether to use Squeeze-and-Excitation module
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       assert num_layers in resnet_spec, \
           "Invalid number of layers: %d. Options are %s"%(
               num_layers, str(resnet_spec.keys()))
       block_type, layers, channels = resnet_spec[num_layers]
       assert 1 <= version <= 2, \
           "Invalid resnet version: %d. Options are 1 and 2."%version
       resnet_class = resnet_net_versions[version-1]
       block_class = resnet_block_versions[version-1][block_type]
       net = resnet_class(block_class, layers, channels, use_se=use_se, 
**kwargs)
       if pretrained:
           
           from gluoncv.model_zoo.model_store import get_model_file
           if not use_se:
               net.load_parameters(get_model_file('resnet%d_v%d'%(num_layers, 
version),
                                                  tag=pretrained, root=root), 
ctx=ctx)
           else:
               
net.load_parameters(get_model_file('se_resnet%d_v%d'%(num_layers, version),
                                                  tag=pretrained, root=root), 
ctx=ctx)
           from gluoncv.data import ImageNet1kAttr
           attrib = ImageNet1kAttr()
           net.synset = attrib.synset
           net.classes = attrib.classes
           net.classes_long = attrib.classes_long
       return net
   
   def resnet18_v1(**kwargs):
       r"""ResNet-18 V1 model from `"Deep Residual Learning for Image 
Recognition"
       <http://arxiv.org/abs/1512.03385>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(1, 18, use_se=False, **kwargs)
   
   def resnet34_v1(**kwargs):
       r"""ResNet-34 V1 model from `"Deep Residual Learning for Image 
Recognition"
       <http://arxiv.org/abs/1512.03385>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(1, 34, use_se=False, **kwargs)
   
   def resnet50_v1(**kwargs):
       r"""ResNet-50 V1 model from `"Deep Residual Learning for Image 
Recognition"
       <http://arxiv.org/abs/1512.03385>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(1, 50, use_se=False, **kwargs)
   
   def resnet101_v1(**kwargs):
       r"""ResNet-101 V1 model from `"Deep Residual Learning for Image 
Recognition"
       <http://arxiv.org/abs/1512.03385>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(1, 101, use_se=False, **kwargs)
   
   def resnet152_v1(**kwargs):
       r"""ResNet-152 V1 model from `"Deep Residual Learning for Image 
Recognition"
       <http://arxiv.org/abs/1512.03385>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(1, 152, use_se=False, **kwargs)
   
   def resnet18_v2(**kwargs):
       r"""ResNet-18 V2 model from `"Identity Mappings in Deep Residual 
Networks"
       <https://arxiv.org/abs/1603.05027>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(2, 18, use_se=False, **kwargs)
   
   def resnet34_v2(**kwargs):
       r"""ResNet-34 V2 model from `"Identity Mappings in Deep Residual 
Networks"
       <https://arxiv.org/abs/1603.05027>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(2, 34, use_se=False, **kwargs)
   
   def resnet50_v2(**kwargs):
       r"""ResNet-50 V2 model from `"Identity Mappings in Deep Residual 
Networks"
       <https://arxiv.org/abs/1603.05027>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(2, 50, use_se=False, **kwargs)
   
   def resnet101_v2(**kwargs):
       r"""ResNet-101 V2 model from `"Identity Mappings in Deep Residual 
Networks"
       <https://arxiv.org/abs/1603.05027>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(2, 101, use_se=False, **kwargs)
   
   def resnet152_v2(**kwargs):
       r"""ResNet-152 V2 model from `"Identity Mappings in Deep Residual 
Networks"
       <https://arxiv.org/abs/1603.05027>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(2, 152, use_se=False, **kwargs)
   
   # SE-ResNet
   def se_resnet18_v1(**kwargs):
       r"""SE-ResNet-18 V1 model from `"Squeeze-and-Excitation Networks"
       <https://arxiv.org/abs/1709.01507>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(1, 18, use_se=True, **kwargs)
   
   def se_resnet34_v1(**kwargs):
       r"""SE-ResNet-34 V1 model from `"Squeeze-and-Excitation Networks"
       <https://arxiv.org/abs/1709.01507>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(1, 34, use_se=True, **kwargs)
   
   def se_resnet50_v1(**kwargs):
       r"""SE-ResNet-50 V1 model from `"Squeeze-and-Excitation Networks"
       <https://arxiv.org/abs/1709.01507>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(1, 50, use_se=True, **kwargs)
   
   def se_resnet101_v1(**kwargs):
       r"""SE-ResNet-101 V1 model from `"Squeeze-and-Excitation Networks"
       <https://arxiv.org/abs/1709.01507>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(1, 101, use_se=True, **kwargs)
   
   def se_resnet152_v1(**kwargs):
       r"""SE-ResNet-152 V1 model from `"Squeeze-and-Excitation Networks"
       <https://arxiv.org/abs/1709.01507>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(1, 152, use_se=True, **kwargs)
   
   def se_resnet18_v2(**kwargs):
       r"""SE-ResNet-18 V2 model from `"Squeeze-and-Excitation Networks"
       <https://arxiv.org/abs/1709.01507>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(2, 18, use_se=True, **kwargs)
   
   def se_resnet34_v2(**kwargs):
       r"""SE-ResNet-34 V2 model from `"Squeeze-and-Excitation Networks"
       <https://arxiv.org/abs/1709.01507>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(2, 34, use_se=True, **kwargs)
   
   def se_resnet50_v2(**kwargs):
       r"""SE-ResNet-50 V2 model from `"Squeeze-and-Excitation Networks"
       <https://arxiv.org/abs/1709.01507>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(2, 50, use_se=True, **kwargs)
   
   def se_resnet101_v2(**kwargs):
       r"""SE-ResNet-101 V2 model from `"Squeeze-and-Excitation Networks"
       <https://arxiv.org/abs/1709.01507>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(2, 101, use_se=True, **kwargs)
   
   def se_resnet152_v2(**kwargs):
       r"""SE-ResNet-152 V2 model from `"Squeeze-and-Excitation Networks"
       <https://arxiv.org/abs/1709.01507>`_ paper.
   
       Parameters
       ----------
       pretrained : bool or str
           Boolean value controls whether to load the default pretrained 
weights for model.
           String value represents the hashtag for a certain version of 
pretrained weights.
       ctx : Context, default CPU
           The context in which to load the pretrained weights.
       root : str, default '$MXNET_HOME/models'
           Location for keeping the model parameters.
       norm_layer : object
           Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
           Can be :class:`mxnet.gluon.nn.BatchNorm` or 
:class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       norm_kwargs : dict
           Additional `norm_layer` arguments, for example `num_devices=4`
           for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
       """
       return get_resnet(2, 152, use_se=True, **kwargs)
   
   ```


----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org



---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@mxnet.apache.org
For additional commands, e-mail: issues-h...@mxnet.apache.org

Reply via email to