[ https://issues.apache.org/jira/browse/SPARK-823?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=13985880#comment-13985880 ]
Diana Carroll commented on SPARK-823: ------------------------------------- Yes, please clarify the documentation, I just ran into this. the Configuration guide (http://spark.apache.org/docs/latest/configuration.html) says the default is 8. In testing this on Standalone Spark, there actually is no default value for the variable: >sc.getConf.contains("spark.default.parallelism") >res1: Boolean = false It looks like if the variable is not set, then the default behavior is decided in code, e.g. Partitioner.scala: {code} if (rdd.context.conf.contains("spark.default.parallelism")) { new HashPartitioner(rdd.context.defaultParallelism) } else { new HashPartitioner(bySize.head.partitions.size) } {code} > spark.default.parallelism's default is inconsistent across scheduler backends > ----------------------------------------------------------------------------- > > Key: SPARK-823 > URL: https://issues.apache.org/jira/browse/SPARK-823 > Project: Spark > Issue Type: Bug > Components: Documentation, Spark Core > Affects Versions: 0.8.0, 0.7.3 > Reporter: Josh Rosen > Priority: Minor > > The [0.7.3 configuration > guide|http://spark-project.org/docs/latest/configuration.html] says that > {{spark.default.parallelism}}'s default is 8, but the default is actually > max(totalCoreCount, 2) for the standalone scheduler backend, 8 for the Mesos > scheduler, and {{threads}} for the local scheduler: > https://github.com/mesos/spark/blob/v0.7.3/core/src/main/scala/spark/scheduler/cluster/StandaloneSchedulerBackend.scala#L157 > https://github.com/mesos/spark/blob/v0.7.3/core/src/main/scala/spark/scheduler/mesos/MesosSchedulerBackend.scala#L317 > https://github.com/mesos/spark/blob/v0.7.3/core/src/main/scala/spark/scheduler/local/LocalScheduler.scala#L150 > Should this be clarified in the documentation? Should the Mesos scheduler > backend's default be revised? -- This message was sent by Atlassian JIRA (v6.2#6252)