[ 
https://issues.apache.org/jira/browse/SPARK-2426?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Xiangrui Meng updated SPARK-2426:
---------------------------------

    Target Version/s:   (was: 1.1.0)

> Quadratic Minimization for MLlib ALS
> ------------------------------------
>
>                 Key: SPARK-2426
>                 URL: https://issues.apache.org/jira/browse/SPARK-2426
>             Project: Spark
>          Issue Type: New Feature
>          Components: MLlib
>    Affects Versions: 1.0.0
>            Reporter: Debasish Das
>            Assignee: Debasish Das
>   Original Estimate: 504h
>  Remaining Estimate: 504h
>
> Current ALS supports least squares and nonnegative least squares.
> I presented ADMM and IPM based Quadratic Minimization solvers to be used for 
> the following ALS problems:
> 1. ALS with bounds
> 2. ALS with L1 regularization
> 3. ALS with Equality constraint and bounds
> Initial runtime comparisons are presented at Spark Summit. 
> http://spark-summit.org/2014/talk/quadratic-programing-solver-for-non-negative-matrix-factorization-with-spark
> Based on Xiangrui's feedback I am currently comparing the ADMM based 
> Quadratic Minimization solvers with IPM based QpSolvers and the default 
> ALS/NNLS. I will keep updating the runtime comparison results.
> For integration the detailed plan is as follows:
> 1. Add ADMM and IPM based QuadraticMinimization solvers to 
> breeze.optimize.quadratic package.
> 2. Add a QpSolver object in spark mllib optimization which calls breeze
> 3. Add the QpSolver object in spark mllib ALS



--
This message was sent by Atlassian JIRA
(v6.2#6252)

Reply via email to