[ https://issues.apache.org/jira/browse/SPARK-2426?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Xiangrui Meng updated SPARK-2426: --------------------------------- Target Version/s: (was: 1.1.0) > Quadratic Minimization for MLlib ALS > ------------------------------------ > > Key: SPARK-2426 > URL: https://issues.apache.org/jira/browse/SPARK-2426 > Project: Spark > Issue Type: New Feature > Components: MLlib > Affects Versions: 1.0.0 > Reporter: Debasish Das > Assignee: Debasish Das > Original Estimate: 504h > Remaining Estimate: 504h > > Current ALS supports least squares and nonnegative least squares. > I presented ADMM and IPM based Quadratic Minimization solvers to be used for > the following ALS problems: > 1. ALS with bounds > 2. ALS with L1 regularization > 3. ALS with Equality constraint and bounds > Initial runtime comparisons are presented at Spark Summit. > http://spark-summit.org/2014/talk/quadratic-programing-solver-for-non-negative-matrix-factorization-with-spark > Based on Xiangrui's feedback I am currently comparing the ADMM based > Quadratic Minimization solvers with IPM based QpSolvers and the default > ALS/NNLS. I will keep updating the runtime comparison results. > For integration the detailed plan is as follows: > 1. Add ADMM and IPM based QuadraticMinimization solvers to > breeze.optimize.quadratic package. > 2. Add a QpSolver object in spark mllib optimization which calls breeze > 3. Add the QpSolver object in spark mllib ALS -- This message was sent by Atlassian JIRA (v6.2#6252)