[ 
https://issues.apache.org/jira/browse/SPARK-14139?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15211381#comment-15211381
 ] 

koert kuipers commented on SPARK-14139:
---------------------------------------

i believe the difference is in the definition of schema in Dataset.
before it was:
{noformat}
 override def schema: StructType = resolvedTEncoder.schema
{noformat}

now it is:
{noformat}
  def schema: StructType = queryExecution.analyzed.schema
{noformat}

but queryExecution.analyzed (which is a LogicalPlan) does not respect 
nullability in multiple places. In this particular case it is in 
RowEncoder.extractorsFor, where for a StructType for the fields nullable is 
ignored. 

> Dataset loses nullability in operations with RowEncoder
> -------------------------------------------------------
>
>                 Key: SPARK-14139
>                 URL: https://issues.apache.org/jira/browse/SPARK-14139
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>            Reporter: koert kuipers
>            Priority: Minor
>
> When i do
> {noformat}
> val df1 = sc.makeRDD(1 to 3).toDF
> val df2 = df1.map(row => Row(row(0).asInstanceOf[Int] + 
> 1))(RowEncoder(df1.schema))
> println(s"schema before ${df1.schema} and after ${df2.schema}")
> {noformat}
> I get:
> {noformat}
> schema before StructType(StructField(value,IntegerType,false)) and after 
> StructType(StructField(value,IntegerType,true))
> {noformat}
> The change in field nullable is unexpected and i consider it a bug.
> This bug was introduced in:
>  [SPARK-13244][SQL] Migrates DataFrame to Dataset



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to