Russell Jurney created SPARK-14229:
--------------------------------------

             Summary: PySpark DataFrame.rdd's can't be saved to an arbitrary 
Hadoop OutputFormat
                 Key: SPARK-14229
                 URL: https://issues.apache.org/jira/browse/SPARK-14229
             Project: Spark
          Issue Type: Bug
          Components: Input/Output, PySpark, Spark Shell
    Affects Versions: 1.6.1
            Reporter: Russell Jurney


I am able to save data to MongoDB from any RDD... provided that RDD does not 
belong to a DataFrame. If I use DataFrame.rdd, it is not possible to save via 
saveAsNewAPIHadoopFile whatsoever. I have tested that this applies to saving to 
MongoDB, BSON Files, and ElasticSearch.

I get the following error when I try to save to a HadoopFile:

config = {"mongo.output.uri": 
"mongodb://localhost:27017/agile_data_science.on_time_performance"}

n [3]: on_time_dataframe.rdd.saveAsNewAPIHadoopFile(
   ...:   path='file://unused', 
   ...:   outputFormatClass='com.mongodb.hadoop.MongoOutputFormat',
   ...:   keyClass='org.apache.hadoop.io.Text', 
   ...:   valueClass='org.apache.hadoop.io.MapWritable', 
   ...:   conf=config
   ...: )
16/03/28 19:59:57 INFO storage.MemoryStore: Block broadcast_1 stored as values 
in memory (estimated size 62.7 KB, free 147.3 KB)
16/03/28 19:59:57 INFO storage.MemoryStore: Block broadcast_1_piece0 stored as 
bytes in memory (estimated size 20.4 KB, free 167.7 KB)
16/03/28 19:59:57 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in 
memory on localhost:61301 (size: 20.4 KB, free: 511.1 MB)
16/03/28 19:59:57 INFO spark.SparkContext: Created broadcast 1 from 
javaToPython at NativeMethodAccessorImpl.java:-2
16/03/28 19:59:57 INFO Configuration.deprecation: mapred.min.split.size is 
deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize
16/03/28 19:59:57 INFO parquet.ParquetRelation: Reading Parquet file(s) from 
file:/Users/rjurney/Software/Agile_Data_Code_2/data/on_time_performance.parquet/part-r-00000-32089f1b-5447-4a75-b008-4fd0a0a8b846.gz.parquet
16/03/28 19:59:57 INFO spark.SparkContext: Starting job: take at 
SerDeUtil.scala:231
16/03/28 19:59:57 INFO scheduler.DAGScheduler: Got job 1 (take at 
SerDeUtil.scala:231) with 1 output partitions
16/03/28 19:59:57 INFO scheduler.DAGScheduler: Final stage: ResultStage 1 (take 
at SerDeUtil.scala:231)
16/03/28 19:59:57 INFO scheduler.DAGScheduler: Parents of final stage: List()
16/03/28 19:59:57 INFO scheduler.DAGScheduler: Missing parents: List()
16/03/28 19:59:57 INFO scheduler.DAGScheduler: Submitting ResultStage 1 
(MapPartitionsRDD[6] at mapPartitions at SerDeUtil.scala:146), which has no 
missing parents
16/03/28 19:59:57 INFO storage.MemoryStore: Block broadcast_2 stored as values 
in memory (estimated size 14.9 KB, free 182.6 KB)
16/03/28 19:59:57 INFO storage.MemoryStore: Block broadcast_2_piece0 stored as 
bytes in memory (estimated size 7.5 KB, free 190.1 KB)
16/03/28 19:59:57 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in 
memory on localhost:61301 (size: 7.5 KB, free: 511.1 MB)
16/03/28 19:59:57 INFO spark.SparkContext: Created broadcast 2 from broadcast 
at DAGScheduler.scala:1006
16/03/28 19:59:57 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from 
ResultStage 1 (MapPartitionsRDD[6] at mapPartitions at SerDeUtil.scala:146)
16/03/28 19:59:57 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0 with 1 
tasks
16/03/28 19:59:57 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 1.0 
(TID 8, localhost, partition 0,PROCESS_LOCAL, 2739 bytes)
16/03/28 19:59:57 INFO executor.Executor: Running task 0.0 in stage 1.0 (TID 8)
16/03/28 19:59:58 INFO 
parquet.ParquetRelation$$anonfun$buildInternalScan$1$$anon$1: Input split: 
ParquetInputSplit{part: 
file:/Users/rjurney/Software/Agile_Data_Code_2/data/on_time_performance.parquet/part-r-00000-32089f1b-5447-4a75-b008-4fd0a0a8b846.gz.parquet
 start: 0 end: 134217728 length: 134217728 hosts: []}
16/03/28 19:59:59 INFO compress.CodecPool: Got brand-new decompressor [.gz]
16/03/28 19:59:59 ERROR executor.Executor: Exception in task 0.0 in stage 1.0 
(TID 8)
net.razorvine.pickle.PickleException: expected zero arguments for construction 
of ClassDict (for pyspark.sql.types._create_row)
        at 
net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
        at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707)
        at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175)
        at net.razorvine.pickle.Unpickler.load(Unpickler.java:99)
        at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112)
        at 
org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150)
        at 
org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149)
        at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
        at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308)
        at scala.collection.Iterator$class.foreach(Iterator.scala:727)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
        at 
scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
        at 
scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
        at 
scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
        at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
        at scala.collection.AbstractIterator.to(Iterator.scala:1157)
        at 
scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
        at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
        at 
scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
        at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
        at 
org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
        at 
org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
        at 
org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
        at 
org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
        at org.apache.spark.scheduler.Task.run(Task.scala:89)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)
Traceback (most recent call last):
  File 
"/Users/rjurney/Software/Agile_Data_Code_2/spark/python/lib/pyspark.zip/pyspark/daemon.py",
 line 157, in manager
  File 
"/Users/rjurney/Software/Agile_Data_Code_2/spark/python/lib/pyspark.zip/pyspark/daemon.py",
 line 61, in worker
  File 
"/Users/rjurney/Software/Agile_Data_Code_2/spark/python/lib/pyspark.zip/pyspark/worker.py",
 line 136, in main
    if read_int(infile) == SpecialLengths.END_OF_STREAM:
  File 
"/Users/rjurney/Software/Agile_Data_Code_2/spark/python/lib/pyspark.zip/pyspark/serializers.py",
 line 545, in read_int
    raise EOFError
EOFError
16/03/28 19:59:59 WARN scheduler.TaskSetManager: Lost task 0.0 in stage 1.0 
(TID 8, localhost): net.razorvine.pickle.PickleException: expected zero 
arguments for construction of ClassDict (for pyspark.sql.types._create_row)
        at 
net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
        at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707)
        at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175)
        at net.razorvine.pickle.Unpickler.load(Unpickler.java:99)
        at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112)
        at 
org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150)
        at 
org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149)
        at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
        at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308)
        at scala.collection.Iterator$class.foreach(Iterator.scala:727)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
        at 
scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
        at 
scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
        at 
scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
        at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
        at scala.collection.AbstractIterator.to(Iterator.scala:1157)
        at 
scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
        at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
        at 
scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
        at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
        at 
org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
        at 
org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
        at 
org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
        at 
org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
        at org.apache.spark.scheduler.Task.run(Task.scala:89)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)

16/03/28 19:59:59 ERROR scheduler.TaskSetManager: Task 0 in stage 1.0 failed 1 
times; aborting job
16/03/28 19:59:59 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 1.0, whose 
tasks have all completed, from pool 
16/03/28 19:59:59 INFO scheduler.TaskSchedulerImpl: Cancelling stage 1
16/03/28 19:59:59 INFO scheduler.DAGScheduler: ResultStage 1 (take at 
SerDeUtil.scala:231) failed in 1.683 s
16/03/28 19:59:59 INFO scheduler.DAGScheduler: Job 1 failed: take at 
SerDeUtil.scala:231, took 1.703169 s
---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
<ipython-input-3-c91c1bc7b72a> in <module>()
      4   keyClass='org.apache.hadoop.io.Text',
      5   valueClass='org.apache.hadoop.io.MapWritable',
----> 6   conf=config
      7 )

/Users/rjurney/Software/Agile_Data_Code_2/spark/python/pyspark/rdd.pyc in 
saveAsNewAPIHadoopFile(self, path, outputFormatClass, keyClass, valueClass, 
keyConverter, valueConverter, conf)
   1372                                                        
outputFormatClass,
   1373                                                        keyClass, 
valueClass,
-> 1374                                                        keyConverter, 
valueConverter, jconf)
   1375 
   1376     def saveAsHadoopDataset(self, conf, keyConverter=None, 
valueConverter=None):

/Users/rjurney/Software/Agile_Data_Code_2/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py
 in __call__(self, *args)
    811         answer = self.gateway_client.send_command(command)
    812         return_value = get_return_value(
--> 813             answer, self.gateway_client, self.target_id, self.name)
    814 
    815         for temp_arg in temp_args:

/Users/rjurney/Software/Agile_Data_Code_2/spark/python/pyspark/sql/utils.pyc in 
deco(*a, **kw)
     43     def deco(*a, **kw):
     44         try:
---> 45             return f(*a, **kw)
     46         except py4j.protocol.Py4JJavaError as e:
     47             s = e.java_exception.toString()

/Users/rjurney/Software/Agile_Data_Code_2/spark/python/lib/py4j-0.9-src.zip/py4j/protocol.py
 in get_return_value(answer, gateway_client, target_id, name)
    306                 raise Py4JJavaError(
    307                     "An error occurred while calling {0}{1}{2}.\n".
--> 308                     format(target_id, ".", name), value)
    309             else:
    310                 raise Py4JError(

Py4JJavaError: An error occurred while calling 
z:org.apache.spark.api.python.PythonRDD.saveAsNewAPIHadoopFile.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in 
stage 1.0 failed 1 times, most recent failure: Lost task 0.0 in stage 1.0 (TID 
8, localhost): net.razorvine.pickle.PickleException: expected zero arguments 
for construction of ClassDict (for pyspark.sql.types._create_row)
        at 
net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
        at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707)
        at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175)
        at net.razorvine.pickle.Unpickler.load(Unpickler.java:99)
        at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112)
        at 
org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150)
        at 
org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149)
        at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
        at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308)
        at scala.collection.Iterator$class.foreach(Iterator.scala:727)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
        at 
scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
        at 
scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
        at 
scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
        at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
        at scala.collection.AbstractIterator.to(Iterator.scala:1157)
        at 
scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
        at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
        at 
scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
        at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
        at 
org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
        at 
org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
        at 
org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
        at 
org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
        at org.apache.spark.scheduler.Task.run(Task.scala:89)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:
        at 
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
        at 
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
        at 
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
        at scala.Option.foreach(Option.scala:236)
        at 
org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
        at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
        at 
org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858)
        at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1328)
        at 
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
        at 
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
        at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
        at org.apache.spark.rdd.RDD.take(RDD.scala:1302)
        at 
org.apache.spark.api.python.SerDeUtil$.pythonToPairRDD(SerDeUtil.scala:231)
        at 
org.apache.spark.api.python.PythonRDD$.saveAsNewAPIHadoopFile(PythonRDD.scala:775)
        at 
org.apache.spark.api.python.PythonRDD.saveAsNewAPIHadoopFile(PythonRDD.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at 
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at 
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:497)
        at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
        at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
        at py4j.Gateway.invoke(Gateway.java:259)
        at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
        at py4j.commands.CallCommand.execute(CallCommand.java:79)
        at py4j.GatewayConnection.run(GatewayConnection.java:209)
        at java.lang.Thread.run(Thread.java:745)
Caused by: net.razorvine.pickle.PickleException: expected zero arguments for 
construction of ClassDict (for pyspark.sql.types._create_row)
        at 
net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
        at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707)
        at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175)
        at net.razorvine.pickle.Unpickler.load(Unpickler.java:99)
        at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112)
        at 
org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:150)
        at 
org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:149)
        at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
        at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308)
        at scala.collection.Iterator$class.foreach(Iterator.scala:727)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
        at 
scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
        at 
scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
        at 
scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
        at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
        at scala.collection.AbstractIterator.to(Iterator.scala:1157)
        at 
scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
        at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
        at 
scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
        at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
        at 
org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
        at 
org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1328)
        at 
org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
        at 
org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
        at org.apache.spark.scheduler.Task.run(Task.scala:89)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        ... 1 more



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to