[ https://issues.apache.org/jira/browse/SPARK-14231?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15215577#comment-15215577 ]
Hyukjin Kwon commented on SPARK-14231: -------------------------------------- Sorry for adding many comment but maybe would this better just infers them as {{DoubleType}}? I just noticed JSON data source produces {{DoubleType}} when it does not fix in a decimal during trying to find a compatible type. If {{prefersDecimal}} does not infer all floating types must be {{DecimalTypes}} then, I feel it might be okay to make this {{DoubleType}} when it does not fit.. > JSON data source fails to infer floats as decimal when precision is bigger > than 38 or scale is bigger than precision. > --------------------------------------------------------------------------------------------------------------------- > > Key: SPARK-14231 > URL: https://issues.apache.org/jira/browse/SPARK-14231 > Project: Spark > Issue Type: Bug > Components: SQL > Reporter: Hyukjin Kwon > Priority: Minor > Fix For: 2.0.0 > > > Currently, JSON data source supports {{floatAsBigDecimal}} option, which > reads floats as {{DecimalType}}. > I noticed there are several restrictions in Spark {{DecimalType}} below: > 1. The precision cannot be bigger than 38. > 2. scale cannot be bigger than precision. > However, with the option above, it reads {{BigDecimal}} which does not follow > the conditions above. > This could be observed as below: > {code} > def simpleFloats: RDD[String] = > sqlContext.sparkContext.parallelize( > """{"a": 0.01}""" :: > """{"a": 0.02}""" :: Nil) > val jsonDF = sqlContext.read > .option("floatAsBigDecimal", "true") > .json(simpleFloats) > jsonDF.printSchema() > {code} > throws an exception below: > {code} > org.apache.spark.sql.AnalysisException: Decimal scale (2) cannot be greater > than precision (1).; > at org.apache.spark.sql.types.DecimalType.<init>(DecimalType.scala:44) > at > org.apache.spark.sql.execution.datasources.json.InferSchema$.org$apache$spark$sql$execution$datasources$json$InferSchema$$inferField(InferSchema.scala:144) > at > org.apache.spark.sql.execution.datasources.json.InferSchema$.org$apache$spark$sql$execution$datasources$json$InferSchema$$inferField(InferSchema.scala:108) > at > org.apache.spark.sql.execution.datasources.json.InferSchema$$anonfun$1$$anonfun$apply$1$$anonfun$apply$3.apply(InferSchema.scala:59) > at > org.apache.spark.sql.execution.datasources.json.InferSchema$$anonfun$1$$anonfun$apply$1$$anonfun$apply$3.apply(InferSchema.scala:57) > at org.apache.spark.util.Utils$.tryWithResource(Utils.scala:2249) > at > org.apache.spark.sql.execution.datasources.json.InferSchema$$anonfun$1$$anonfun$apply$1.apply(InferSchema.scala:57) > at > org.apache.spark.sql.execution.datasources.json.InferSchema$$anonfun$1$$anonfun$apply$1.apply(InferSchema.scala:55) > at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:396) > at scala.collection.Iterator$class.foreach(Iterator.scala:742) > ... > {code} > Since JSON data source infers {{DataType}} as {{StringType}} when it fails to > infer, it might have to be inferred as {{StringType}} or maybe just simply > {{DoubleType}} -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org