[ 
https://issues.apache.org/jira/browse/SPARK-14409?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15240607#comment-15240607
 ] 

Yong Tang commented on SPARK-14409:
-----------------------------------

Thanks [~mlnick] [~josephkb]. Yes I think wrapping RankingMetrics could be the 
first step and reimplementing all RankingEvaluator methods in ML using 
DataFrames would be good after that. I will work on the reimplementation in 
several followup PRs.

> Investigate adding a RankingEvaluator to ML
> -------------------------------------------
>
>                 Key: SPARK-14409
>                 URL: https://issues.apache.org/jira/browse/SPARK-14409
>             Project: Spark
>          Issue Type: New Feature
>          Components: ML
>            Reporter: Nick Pentreath
>            Priority: Minor
>
> {{mllib.evaluation}} contains a {{RankingMetrics}} class, while there is no 
> {{RankingEvaluator}} in {{ml.evaluation}}. Such an evaluator can be useful 
> for recommendation evaluation (and can be useful in other settings 
> potentially).
> Should be thought about in conjunction with adding the "recommendAll" methods 
> in SPARK-13857, so that top-k ranking metrics can be used in cross-validators.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to