[ https://issues.apache.org/jira/browse/SPARK-11293?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15249679#comment-15249679 ]
Reynold Xin edited comment on SPARK-11293 at 5/3/16 4:31 AM: ------------------------------------------------------------- I was using Apache spark 1.6 in EMR with spark streaming in yarn and saw memory leaks in one of the containers. Here are the logs {code} 16/04/14 13:49:10 INFO executor.CoarseGrainedExecutorBackend: Got assigned task 2942916 16/04/14 13:49:10 INFO executor.Executor: Running task 22.0 in stage 35684.0 (TID 2942915) 16/04/14 13:49:10 INFO executor.Executor: Running task 23.0 in stage 35684.0 (TID 2942916) 16/04/14 13:49:10 INFO storage.ShuffleBlockFetcherIterator: Getting 94 non-empty blocks out of 94 blocks 16/04/14 13:49:10 INFO storage.ShuffleBlockFetcherIterator: Getting 94 non-empty blocks out of 94 blocks 16/04/14 13:49:10 INFO storage.ShuffleBlockFetcherIterator: Started 2 remote fetches in 1 ms 16/04/14 13:49:10 INFO storage.ShuffleBlockFetcherIterator: Started 2 remote fetches in 1 ms 16/04/14 13:49:10 INFO storage.MemoryStore: Block input-3-1460583424327 stored as values in memory (estimated size 244.7 KB, free 19.3 MB) 16/04/14 13:49:10 INFO receiver.BlockGenerator: Pushed block input-3-1460641750200 16/04/14 13:49:10 INFO storage.MemoryStore: 1 blocks selected for dropping 16/04/14 13:49:10 INFO storage.BlockManager: Dropping block input-1-1460615659379 from memory 16/04/14 13:49:10 INFO storage.MemoryStore: 1 blocks selected for dropping 16/04/14 13:49:10 INFO storage.BlockManager: Dropping block input-1-1460615659380 from memory 16/04/14 13:49:10 INFO memory.TaskMemoryManager: Memory used in task 2942915 16/04/14 13:49:10 INFO memory.TaskMemoryManager: Acquired by org.apache.spark.unsafe.map.BytesToBytesMap@34158d5f: 32.3 MB 16/04/14 13:49:10 INFO memory.TaskMemoryManager: 0 bytes of memory were used by task 2942915 but are not associated with specific consumers 16/04/14 13:49:10 INFO memory.TaskMemoryManager: 101247172 bytes of memory are used for execution and 3603881260 bytes of memory are used for storage 16/04/14 13:49:10 WARN memory.TaskMemoryManager: leak 32.3 MB memory from org.apache.spark.unsafe.map.BytesToBytesMap@34158d5f 16/04/14 13:49:10 ERROR executor.Executor: Managed memory leak detected; size = 33816576 bytes, TID = 2942915 16/04/14 13:49:10 ERROR executor.Executor: Exception in task 22.0 in stage 35684.0 (TID 2942915) java.lang.OutOfMemoryError: Unable to acquire 262144 bytes of memory, got 220032 at org.apache.spark.memory.MemoryConsumer.allocateArray(MemoryConsumer.java:91) at org.apache.spark.unsafe.map.BytesToBytesMap.allocate(BytesToBytesMap.java:735) at org.apache.spark.unsafe.map.BytesToBytesMap.<init>(BytesToBytesMap.java:197) at org.apache.spark.unsafe.map.BytesToBytesMap.<init>(BytesToBytesMap.java:212) at org.apache.spark.sql.execution.UnsafeFixedWidthAggregationMap.<init>(UnsafeFixedWidthAggregationMap.java:103) at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.<init>(TungstenAggregationIterator.scala:483) at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:95) at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:86) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:89) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) 16/04/14 13:49:10 INFO executor.Executor: Finished task 23.0 in stage 35684.0 (TID 2942916). 1921 bytes result sent to driver 16/04/14 13:49:10 INFO executor.CoarseGrainedExecutorBackend: Got assigned task 2942927 16/04/14 13:49:10 INFO executor.Executor: Running task 34.0 in stage 35684.0 (TID 2942927) 16/04/14 13:49:10 ERROR util.SparkUncaughtExceptionHandler: Uncaught exception in thread Thread[Executor task launch worker-2,5,main] java.lang.OutOfMemoryError: Unable to acquire 262144 bytes of memory, got 220032 at org.apache.spark.memory.MemoryConsumer.allocateArray(MemoryConsumer.java:91) at org.apache.spark.unsafe.map.BytesToBytesMap.allocate(BytesToBytesMap.java:735) at org.apache.spark.unsafe.map.BytesToBytesMap.<init>(BytesToBytesMap.java:197) at org.apache.spark.unsafe.map.BytesToBytesMap.<init>(BytesToBytesMap.java:212) at org.apache.spark.sql.execution.UnsafeFixedWidthAggregationMap.<init>(UnsafeFixedWidthAggregationMap.java:103) at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.<init>(TungstenAggregationIterator.scala:483) at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:95) at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:86) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:89) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) {code} was (Author: ibnipu...@gmail.com): I was using Apache spark 1.6 in EMR with spark streaming in yarn and saw memory leaks in one of the containers. Here are the logs 16/04/14 13:49:10 INFO executor.CoarseGrainedExecutorBackend: Got assigned task 2942916 16/04/14 13:49:10 INFO executor.Executor: Running task 22.0 in stage 35684.0 (TID 2942915) 16/04/14 13:49:10 INFO executor.Executor: Running task 23.0 in stage 35684.0 (TID 2942916) 16/04/14 13:49:10 INFO storage.ShuffleBlockFetcherIterator: Getting 94 non-empty blocks out of 94 blocks 16/04/14 13:49:10 INFO storage.ShuffleBlockFetcherIterator: Getting 94 non-empty blocks out of 94 blocks 16/04/14 13:49:10 INFO storage.ShuffleBlockFetcherIterator: Started 2 remote fetches in 1 ms 16/04/14 13:49:10 INFO storage.ShuffleBlockFetcherIterator: Started 2 remote fetches in 1 ms 16/04/14 13:49:10 INFO storage.MemoryStore: Block input-3-1460583424327 stored as values in memory (estimated size 244.7 KB, free 19.3 MB) 16/04/14 13:49:10 INFO receiver.BlockGenerator: Pushed block input-3-1460641750200 16/04/14 13:49:10 INFO storage.MemoryStore: 1 blocks selected for dropping 16/04/14 13:49:10 INFO storage.BlockManager: Dropping block input-1-1460615659379 from memory 16/04/14 13:49:10 INFO storage.MemoryStore: 1 blocks selected for dropping 16/04/14 13:49:10 INFO storage.BlockManager: Dropping block input-1-1460615659380 from memory 16/04/14 13:49:10 INFO memory.TaskMemoryManager: Memory used in task 2942915 16/04/14 13:49:10 INFO memory.TaskMemoryManager: Acquired by org.apache.spark.unsafe.map.BytesToBytesMap@34158d5f: 32.3 MB 16/04/14 13:49:10 INFO memory.TaskMemoryManager: 0 bytes of memory were used by task 2942915 but are not associated with specific consumers 16/04/14 13:49:10 INFO memory.TaskMemoryManager: 101247172 bytes of memory are used for execution and 3603881260 bytes of memory are used for storage 16/04/14 13:49:10 WARN memory.TaskMemoryManager: leak 32.3 MB memory from org.apache.spark.unsafe.map.BytesToBytesMap@34158d5f 16/04/14 13:49:10 ERROR executor.Executor: Managed memory leak detected; size = 33816576 bytes, TID = 2942915 16/04/14 13:49:10 ERROR executor.Executor: Exception in task 22.0 in stage 35684.0 (TID 2942915) java.lang.OutOfMemoryError: Unable to acquire 262144 bytes of memory, got 220032 at org.apache.spark.memory.MemoryConsumer.allocateArray(MemoryConsumer.java:91) at org.apache.spark.unsafe.map.BytesToBytesMap.allocate(BytesToBytesMap.java:735) at org.apache.spark.unsafe.map.BytesToBytesMap.<init>(BytesToBytesMap.java:197) at org.apache.spark.unsafe.map.BytesToBytesMap.<init>(BytesToBytesMap.java:212) at org.apache.spark.sql.execution.UnsafeFixedWidthAggregationMap.<init>(UnsafeFixedWidthAggregationMap.java:103) at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.<init>(TungstenAggregationIterator.scala:483) at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:95) at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:86) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:89) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) 16/04/14 13:49:10 INFO executor.Executor: Finished task 23.0 in stage 35684.0 (TID 2942916). 1921 bytes result sent to driver 16/04/14 13:49:10 INFO executor.CoarseGrainedExecutorBackend: Got assigned task 2942927 16/04/14 13:49:10 INFO executor.Executor: Running task 34.0 in stage 35684.0 (TID 2942927) 16/04/14 13:49:10 ERROR util.SparkUncaughtExceptionHandler: Uncaught exception in thread Thread[Executor task launch worker-2,5,main] java.lang.OutOfMemoryError: Unable to acquire 262144 bytes of memory, got 220032 at org.apache.spark.memory.MemoryConsumer.allocateArray(MemoryConsumer.java:91) at org.apache.spark.unsafe.map.BytesToBytesMap.allocate(BytesToBytesMap.java:735) at org.apache.spark.unsafe.map.BytesToBytesMap.<init>(BytesToBytesMap.java:197) at org.apache.spark.unsafe.map.BytesToBytesMap.<init>(BytesToBytesMap.java:212) at org.apache.spark.sql.execution.UnsafeFixedWidthAggregationMap.<init>(UnsafeFixedWidthAggregationMap.java:103) at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.<init>(TungstenAggregationIterator.scala:483) at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:95) at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:86) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:89) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) > Spillable collections leak shuffle memory > ----------------------------------------- > > Key: SPARK-11293 > URL: https://issues.apache.org/jira/browse/SPARK-11293 > Project: Spark > Issue Type: Bug > Components: Spark Core > Affects Versions: 1.3.1, 1.4.1, 1.5.1, 1.6.0, 1.6.1 > Reporter: Josh Rosen > Assignee: Josh Rosen > Priority: Critical > > I discovered multiple leaks of shuffle memory while working on my memory > manager consolidation patch, which added the ability to do strict memory leak > detection for the bookkeeping that used to be performed by the > ShuffleMemoryManager. This uncovered a handful of places where tasks can > acquire execution/shuffle memory but never release it, starving themselves of > memory. > Problems that I found: > * {{ExternalSorter.stop()}} should release the sorter's shuffle/execution > memory. > * BlockStoreShuffleReader should call {{ExternalSorter.stop()}} using a > {{CompletionIterator}}. > * {{ExternalAppendOnlyMap}} exposes no equivalent of {{stop()}} for freeing > its resources. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org