[ 
https://issues.apache.org/jira/browse/SPARK-15746?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15314627#comment-15314627
 ] 

Nick Pentreath commented on SPARK-15746:
----------------------------------------

I'd say hold off on working on it until we decide which approach to take, but 
once that is done sure.

> SchemaUtils.checkColumnType with VectorUDT prints instance details in error 
> message
> -----------------------------------------------------------------------------------
>
>                 Key: SPARK-15746
>                 URL: https://issues.apache.org/jira/browse/SPARK-15746
>             Project: Spark
>          Issue Type: Improvement
>          Components: ML
>            Reporter: Nick Pentreath
>            Priority: Minor
>
> Currently, many feature transformers in {{ml}} use 
> {{SchemaUtils.checkColumnType(schema, ..., new VectorUDT)}} to check the 
> column type is a ({{ml.linalg}}) vector.
> The resulting error message contains "instance" info for the {{VectorUDT}}, 
> i.e. something like this:
> {code}
> java.lang.IllegalArgumentException: requirement failed: Column features must 
> be of type org.apache.spark.ml.linalg.VectorUDT@3bfc3ba7 but was actually 
> StringType.
> {code}
> A solution would either be to amend {{SchemaUtils.checkColumnType}} to print 
> the error message using {{getClass.getName}}, or to create a {{private[spark] 
> case object VectorUDT extends VectorUDT}} for convenience, since it is used 
> so often (and incidentally this would make it easier to put {{VectorUDT}} 
> into lists of data types e.g. schema validation, UDAFs etc).



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to