[ https://issues.apache.org/jira/browse/SPARK-15786?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Michael Armbrust updated SPARK-15786: ------------------------------------- Target Version/s: 2.0.0 > joinWith bytecode generation calling ByteBuffer.wrap with InternalRow > --------------------------------------------------------------------- > > Key: SPARK-15786 > URL: https://issues.apache.org/jira/browse/SPARK-15786 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 1.6.1, 2.0.0 > Reporter: Richard Marscher > > {code}java.lang.RuntimeException: Error while decoding: > java.util.concurrent.ExecutionException: java.lang.Exception: failed to > compile: org.codehaus.commons.compiler.CompileException: File > 'generated.java', Line 36, Column 107: No applicable constructor/method found > for actual parameters "org.apache.spark.sql.catalyst.InternalRow"; candidates > are: "public static java.nio.ByteBuffer java.nio.ByteBuffer.wrap(byte[])", > "public static java.nio.ByteBuffer java.nio.ByteBuffer.wrap(byte[], int, > int)"{code} > I have been trying to use joinWith along with Option data types to get an > approximation of the RDD semantics for outer joins with Dataset to have a > nicer API for Scala. However, using the Dataset.as[] syntax leads to bytecode > generation trying to pass an InternalRow object into the ByteBuffer.wrap > function which expects byte[] with or without a couple int qualifiers. > I have a notebook reproducing this against 2.0 preview in Databricks > Community Edition: > https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/160347920874755/1039589581260901/673639177603143/latest.html -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org