[ 
https://issues.apache.org/jira/browse/SPARK-15346?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Abraham Zhan updated SPARK-15346:
---------------------------------
    Target Version/s: 2.0.0

> Reduce duplicate computation in picking initial points in LocalKMeans
> ---------------------------------------------------------------------
>
>                 Key: SPARK-15346
>                 URL: https://issues.apache.org/jira/browse/SPARK-15346
>             Project: Spark
>          Issue Type: Improvement
>         Environment: Ubuntu 14.04
>            Reporter: Abraham Zhan
>            Assignee: Abraham Zhan
>            Priority: Minor
>              Labels: performance
>             Fix For: 2.0.0
>
>
> h2.Main Issue
> I found that for KMans|| in mllib, when dataset is in large scale, after 
> initial KMeans|| finishes and before Lloyd's iteration begins, the program 
> will stuck for a long time without terminal. After testing I see it's stucked 
> with LocalKMeans. And there is a to be improved feature in LocalKMeans.scala 
> in Mllib. After picking each new initial centers, it's unnecessary to compute 
> the distances between all the points and the old centers as below
> {code:scala}
> val costArray = points.map { point =>
>       KMeans.fastSquaredDistance(point, centers(0))
>     }
> {code}
> Instead this we can keep the distance between all the points and their 
> closest centers, and compare to the distance of them with the new center then 
> update them.
> h2.Test
> Download 
> [LocalKMeans.zip|https://dl.dropboxusercontent.com/u/83207617/LocalKMeans.zip]
> I provided a attach "LocalKMeans.zip" which contains the code 
> "LocalKMeans2.scala" and dataset "bigKMeansMedia" 
> LocalKMeans2.scala contains both original version method KMeansPlusPlus and a 
> modified version KMeansPlusPlusModify. (best fit with spark.mllib-1.6.0)
> I added a tests and main function in it so that any one can run the file 
> directly.
> h3.How to Test
> Replacing mllib.clustering.LocalKMeans.scala in your local repository with my 
> LocalKMeans2.scala or just  put them in the same dir. 
> Modify the path in line 34 (loadAndRun()) with the path you restoring the 
> data file bigKMeansMedia which is also provided in the patch. 
> Tune the 2nd and 3rd parameter in line 34 (loadAndRun()) which are refereed 
> to clustering number K and iteration number respectively. 
> Then the console will print the cost time and SE of the two version of 
> KMeans++ respectively.
> h2.Test Results
> This data is generated from a KMeans|| eperiment in spark, I add some inner 
> function and output the result of KMeans|| initialization and restore.
> The first line of the file with format "%d:%d:%d:%d" indicates "the 
> seed:feature num:iteration num (in original KMeans||):points num" of the 
> data. 
> In my machine the experiment result is as below:
> !https://cloud.githubusercontent.com/assets/10915169/15175957/6b21c3b0-179b-11e6-9741-66dfe4e23eb7.jpg!
>  the x-axis is the clustering num k while y-axis is the time in seconds



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to