[ 
https://issues.apache.org/jira/browse/SPARK-16425?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Shivaram Venkataraman updated SPARK-16425:
------------------------------------------
    Assignee: Dongjoon Hyun

> SparkR summary() fails on column of type logical
> ------------------------------------------------
>
>                 Key: SPARK-16425
>                 URL: https://issues.apache.org/jira/browse/SPARK-16425
>             Project: Spark
>          Issue Type: Bug
>          Components: SparkR, SQL
>    Affects Versions: 1.6.1
>         Environment: Databricks.com
>            Reporter: Neil Dewar
>            Assignee: Dongjoon Hyun
>            Priority: Minor
>             Fix For: 2.0.1, 2.1.0
>
>
> I created a DataFrame.  I added a logical column to the DataFrame using:
>   sdfAdults <- withColumn(sdfAdults, "IsGT50K", sdfAdults$gt50==" <=50K")
> The resulting column was reported using str() as being of type logical, with 
> values TRUE and FALSE.
> I subsequently ran the command:
>    summary(sdfAdults)
> The command failed reporting that the mean could not be calculated on a 
> column of type logical.
> Error in invokeJava(isStatic = FALSE, objId$id, methodName, ...) : 
>   org.apache.spark.sql.AnalysisException: cannot resolve 'avg(IsGT50K)' due 
> to data type mismatch: function average requires numeric types, not 
> BooleanType;
>       at 
> org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
>       at 
> org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:65)
>       at 
> org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:57)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:335)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:335)
>       at 
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:69)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:334)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:332)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:332)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:281)
>       at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>       at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>       at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>       at 
> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>       at 
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>       at 
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>       at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
>       at scala.collection.AbstractIterator.to(Iterator.scala:1157)



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to