[ https://issues.apache.org/jira/browse/SPARK-12157?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15401190#comment-15401190 ]
Maciej Szymkiewicz commented on SPARK-12157: -------------------------------------------- Well, it is alpha component (see Scala API docs https://spark.apache.org/docs/latest/api/scala/#org.apache.spark.mllib.linalg.VectorUDT). > Support numpy types as return values of Python UDFs > --------------------------------------------------- > > Key: SPARK-12157 > URL: https://issues.apache.org/jira/browse/SPARK-12157 > Project: Spark > Issue Type: Improvement > Components: PySpark, SQL > Affects Versions: 1.5.2 > Reporter: Justin Uang > > Currently, if I have a python UDF > {code} > import pyspark.sql.types as T > import pyspark.sql.functions as F > from pyspark.sql import Row > import numpy as np > argmax = F.udf(lambda x: np.argmax(x), T.IntegerType()) > df = sqlContext.createDataFrame([Row(array=[1,2,3])]) > df.select(argmax("array")).count() > {code} > I get an exception that is fairly opaque: > {code} > Caused by: net.razorvine.pickle.PickleException: expected zero arguments for > construction of ClassDict (for numpy.dtype) > at > net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23) > at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:701) > at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:171) > at net.razorvine.pickle.Unpickler.load(Unpickler.java:85) > at net.razorvine.pickle.Unpickler.loads(Unpickler.java:98) > at > org.apache.spark.sql.execution.BatchPythonEvaluation$$anonfun$doExecute$1$$anonfun$apply$3.apply(python.scala:404) > at > org.apache.spark.sql.execution.BatchPythonEvaluation$$anonfun$doExecute$1$$anonfun$apply$3.apply(python.scala:403) > {code} > Numpy types like np.int and np.float64 should automatically be cast to the > proper dtypes. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org