[ https://issues.apache.org/jira/browse/SPARK-16826?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Apache Spark reassigned SPARK-16826: ------------------------------------ Assignee: Apache Spark > java.util.Hashtable limits the throughput of PARSE_URL() > -------------------------------------------------------- > > Key: SPARK-16826 > URL: https://issues.apache.org/jira/browse/SPARK-16826 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 2.0.0 > Reporter: Sylvain Zimmer > Assignee: Apache Spark > > Hello! > I'm using {{c4.8xlarge}} instances on EC2 with 36 cores and doing lots of > {{parse_url(url, "host")}} in Spark SQL. > Unfortunately it seems that there is an internal thread-safe cache in there, > and the instances end up being 90% idle. > When I view the thread dump for my executors, most of the executor threads > are "BLOCKED", in that state: > {code} > java.util.Hashtable.get(Hashtable.java:362) > java.net.URL.getURLStreamHandler(URL.java:1135) > java.net.URL.<init>(URL.java:599) > java.net.URL.<init>(URL.java:490) > java.net.URL.<init>(URL.java:439) > org.apache.spark.sql.catalyst.expressions.ParseUrl.getUrl(stringExpressions.scala:731) > org.apache.spark.sql.catalyst.expressions.ParseUrl.parseUrlWithoutKey(stringExpressions.scala:772) > org.apache.spark.sql.catalyst.expressions.ParseUrl.eval(stringExpressions.scala:785) > org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificPredicate.eval(Unknown > Source) > org.apache.spark.sql.catalyst.expressions.codegen.GeneratePredicate$$anonfun$create$2.apply(GeneratePredicate.scala:69) > org.apache.spark.sql.catalyst.expressions.codegen.GeneratePredicate$$anonfun$create$2.apply(GeneratePredicate.scala:69) > org.apache.spark.sql.execution.FilterExec$$anonfun$17$$anonfun$apply$2.apply(basicPhysicalOperators.scala:203) > org.apache.spark.sql.execution.FilterExec$$anonfun$17$$anonfun$apply$2.apply(basicPhysicalOperators.scala:202) > scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:463) > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown > Source) > org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) > org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370) > scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) > org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:147) > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79) > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47) > org.apache.spark.scheduler.Task.run(Task.scala:85) > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > java.lang.Thread.run(Thread.java:745) > {code} > However, when I switch from 1 executor with 36 cores to 9 executors with 4 > cores, throughput is almost 10x higher and the CPUs are back at ~100% use. > Thanks! -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org