[ https://issues.apache.org/jira/browse/SPARK-16903?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15408704#comment-15408704 ]
Hyukjin Kwon commented on SPARK-16903: -------------------------------------- Hi [~falaki], is this about SPARK-16462, SPARK-16460 and SPARK-15144 ? Maybe the discussion in https://github.com/apache/spark/pull/14118 is related. I guess we have been not reading {{null}}s for {{StringType}}. Meaning this might be not related with the order of column but the type. For example, with the data below: {code} -,a 10,- {code} with the code below: {code} val schema = StructType( StructField("value", DecimalType.SYSTEM_DEFAULT, true) :: StructField("key", StringType, true) :: Nil) val cars = spark.read.format("csv") .schema(schema) .option("header", "false") .option("nullValue", "-") .load("/tmp/null.csv") cars.show() {code} prints the results below: {code} +--------------------+---+ | value|key| +--------------------+---+ | null| a| |10.00000000000000...| -| +--------------------+---+ {code} cc [~proflin] Who I believe took a look for this as well. > nullValue in first field is not respected by CSV source when read > ----------------------------------------------------------------- > > Key: SPARK-16903 > URL: https://issues.apache.org/jira/browse/SPARK-16903 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 2.0.0 > Reporter: Hossein Falaki > > file: > {code} > a,- > -,10 > {code} > Query: > {code} > create temporary table test(key string, val decimal) > using com.databricks.spark.csv > options (path "/tmp/hossein2/null.csv", header "false", delimiter ",", > nullValue "-"); > {code} > Result: > {code} > select count(*) from test where key is null > 0 > {code} > But > {code} > select count(*) from test where val is null > 1 > {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org