[ https://issues.apache.org/jira/browse/SPARK-16907?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Wenchen Fan resolved SPARK-16907. --------------------------------- Resolution: Fixed Fix Version/s: 2.1.0 2.0.1 > Parquet table reading performance regression when vectorized record reader is > not used > -------------------------------------------------------------------------------------- > > Key: SPARK-16907 > URL: https://issues.apache.org/jira/browse/SPARK-16907 > Project: Spark > Issue Type: Bug > Components: SQL > Reporter: Sean Zhong > Assignee: Sean Zhong > Fix For: 2.0.1, 2.1.0 > > > For this parquet reading benchmark, Spark 2.0 is 20%-30% slower than Spark > 1.6. > {code} > // Test Env: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, Intel SSD SC2KW24 > // Generates parquet table with nested columns > spark.range(100000000).select(struct($"id").as("nc")).write.parquet("/tmp/data4") > def time[R](block: => R): Long = { > val t0 = System.nanoTime() > val result = block // call-by-name > val t1 = System.nanoTime() > println("Elapsed time: " + (t1 - t0)/1000000 + "ms") > (t1 - t0)/1000000 > } > val x = ((0 until 20).toList.map(x => > time(spark.read.parquet("/tmp/data4").filter($"nc.id" < > 100).collect()))).sum/20 > {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org