[ 
https://issues.apache.org/jira/browse/SPARK-3181?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15408982#comment-15408982
 ] 

DB Tsai commented on SPARK-3181:
--------------------------------

[~yanboliang] My worry is that with different classes, the visibility may be 
lower, and will be slightly harder for people to try out. Also, we may need to 
have some duplication in code for computing the stats of model. Do you think 
it's possible to have `HuberAggregator` in `LinearRegression`, and we call 
different version based on param? Thanks.

> Add Robust Regression Algorithm with Huber Estimator
> ----------------------------------------------------
>
>                 Key: SPARK-3181
>                 URL: https://issues.apache.org/jira/browse/SPARK-3181
>             Project: Spark
>          Issue Type: New Feature
>          Components: ML, MLlib
>            Reporter: Fan Jiang
>            Assignee: Yanbo Liang
>              Labels: features
>   Original Estimate: 0h
>  Remaining Estimate: 0h
>
> Linear least square estimates assume the error has normal distribution and 
> can behave badly when the errors are heavy-tailed. In practical we get 
> various types of data. We need to include Robust Regression  to employ a 
> fitting criterion that is not as vulnerable as least square.
> In 1973, Huber introduced M-estimation for regression which stands for 
> "maximum likelihood type". The method is resistant to outliers in the 
> response variable and has been widely used.
> The new feature for MLlib will contain 3 new files
> /main/scala/org/apache/spark/mllib/regression/RobustRegression.scala
> /test/scala/org/apache/spark/mllib/regression/RobustRegressionSuite.scala
> /main/scala/org/apache/spark/examples/mllib/HuberRobustRegression.scala
> and one new class HuberRobustGradient in 
> /main/scala/org/apache/spark/mllib/optimization/Gradient.scala



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to