[ https://issues.apache.org/jira/browse/SPARK-17110?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Tomer Kaftan updated SPARK-17110: --------------------------------- Environment: Cluster of 2 AWS r3.xlarge nodes launched via ec2 scripts, Spark 2.0.0, hadoop: yarn, pyspark shell (was: Cluster of 2 AWS r3.xlarge nodes launched via ec2 scripts, pyspark shell) > Pyspark with locality ANY throw java.io.StreamCorruptedException > ---------------------------------------------------------------- > > Key: SPARK-17110 > URL: https://issues.apache.org/jira/browse/SPARK-17110 > Project: Spark > Issue Type: Bug > Components: PySpark > Affects Versions: 2.0.0 > Environment: Cluster of 2 AWS r3.xlarge nodes launched via ec2 > scripts, Spark 2.0.0, hadoop: yarn, pyspark shell > Reporter: Tomer Kaftan > Priority: Critical > > In Pyspark 2.0.0, any task that accesses cached data non-locally throws a > StreamCorruptedException like the stacktrace below: > {noformat} > WARN TaskSetManager: Lost task 7.0 in stage 2.0 (TID 26, 172.31.26.184): > java.io.StreamCorruptedException: invalid stream header: 12010A80 > at > java.io.ObjectInputStream.readStreamHeader(ObjectInputStream.java:807) > at java.io.ObjectInputStream.<init>(ObjectInputStream.java:302) > at > org.apache.spark.serializer.JavaDeserializationStream$$anon$1.<init>(JavaSerializer.scala:63) > at > org.apache.spark.serializer.JavaDeserializationStream.<init>(JavaSerializer.scala:63) > at > org.apache.spark.serializer.JavaSerializerInstance.deserializeStream(JavaSerializer.scala:122) > at > org.apache.spark.serializer.SerializerManager.dataDeserializeStream(SerializerManager.scala:146) > at > org.apache.spark.storage.BlockManager$$anonfun$getRemoteValues$1.apply(BlockManager.scala:524) > at > org.apache.spark.storage.BlockManager$$anonfun$getRemoteValues$1.apply(BlockManager.scala:522) > at scala.Option.map(Option.scala:146) > at > org.apache.spark.storage.BlockManager.getRemoteValues(BlockManager.scala:522) > at org.apache.spark.storage.BlockManager.get(BlockManager.scala:609) > at > org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:661) > at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:330) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:281) > at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70) > at org.apache.spark.scheduler.Task.run(Task.scala:85) > at > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > {noformat} > The simplest way I have found to reproduce this is by running the following > code in the pyspark shell, on a cluster of 2 nodes set to use only one worker > core each: > {code} > x = sc.parallelize([1, 1, 1, 1, 1, 1000, 1, 1, 1], numSlices=9).cache() > x.count() > import time > def waitMap(x): > time.sleep(x) > return x > x.map(waitMap).count() > {code} > Or by running the following via spark-submit: > {code} > from pyspark import SparkContext > sc = SparkContext() > x = sc.parallelize([1, 1, 1, 1, 1, 1000, 1, 1, 1], numSlices=9).cache() > x.count() > import time > def waitMap(x): > time.sleep(x) > return x > x.map(waitMap).count() > {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org