[ https://issues.apache.org/jira/browse/SPARK-15018?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Bryan Cutler updated SPARK-15018: --------------------------------- Priority: Minor (was: Major) > PySpark ML Pipeline fails when no stages set > -------------------------------------------- > > Key: SPARK-15018 > URL: https://issues.apache.org/jira/browse/SPARK-15018 > Project: Spark > Issue Type: Improvement > Components: ML, PySpark > Reporter: Bryan Cutler > Assignee: Bryan Cutler > Priority: Minor > > When fitting a PySpark Pipeline with no stages, it should work as an identity > transformer. Instead the following error is raised: > {noformat} > Traceback (most recent call last): > File "./spark/python/pyspark/ml/base.py", line 64, in fit > return self._fit(dataset) > File "./spark/python/pyspark/ml/pipeline.py", line 99, in _fit > for stage in stages: > TypeError: 'NoneType' object is not iterable > {noformat} > The param {{stages}} should be added to the default param list and > {{getStages}} should call {{getOrDefault}}. > Also, since the default value is {{None}} is then changed to and empty list > {{[]}}, this never changes the value if passed in as a keyword argument. > Instead, the {{kwargs}} value should be changed directly if {{stages is > None}}. > For example > {noformat} > if stages is None: > stages = [] > {noformat} > should be this > {noformat} > if stages is None: > kwargs['stages'] = [] > {noformat} -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org