[ https://issues.apache.org/jira/browse/SPARK-17588?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15504369#comment-15504369 ]
sai pavan kumar chitti commented on SPARK-17588: ------------------------------------------------ input is a single csv file of size ~90GB. 81318461 rows and 109 columns. > java.lang.AssertionError: assertion failed: lapack.dppsv returned 105. when > running glm using gaussian link function. > --------------------------------------------------------------------------------------------------------------------- > > Key: SPARK-17588 > URL: https://issues.apache.org/jira/browse/SPARK-17588 > Project: Spark > Issue Type: Question > Components: SparkR > Affects Versions: 2.0.0 > Reporter: sai pavan kumar chitti > Labels: newbie > > hi, > i am getting java.lang.AssertionError error when running glm, using gaussian > link function, on a dataset with 109 columns and 81318461 rows > Below is the call trace. Can someone please tell me what the issues is > related to and how to go about resolving it. Is it because native > acceleration is not working as i am also seeing following warning messages. > WARN netlib.BLAS: Failed to load implementation from: > com.github.fommil.netlib.NativeRefBLAS > WARN netlib.LAPACK: Failed to load implementation from: > com.github.fommil.netlib.NativeSystemLAPACK > WARN netlib.LAPACK: Failed to load implementation from: > com.github.fommil.netlib.NativeRefLAPACK > 16/09/17 13:08:13 ERROR r.RBackendHandler: fit on > org.apache.spark.ml.r.GeneralizedLinearRegressionWrapper failed > Error in invokeJava(isStatic = TRUE, className, methodName, ...) : > java.lang.AssertionError: assertion failed: lapack.dppsv returned 105. > at scala.Predef$.assert(Predef.scala:170) > at > org.apache.spark.mllib.linalg.CholeskyDecomposition$.solve(CholeskyDecomposition.scala:40) > at > org.apache.spark.ml.optim.WeightedLeastSquares.fit(WeightedLeastSquares.scala:140) > at > org.apache.spark.ml.regression.GeneralizedLinearRegression.train(GeneralizedLinearRegression.scala:265) > at > org.apache.spark.ml.regression.GeneralizedLinearRegression.train(GeneralizedLinearRegression.scala:139) > at org.apache.spark.ml.Predictor.fit(Predictor.scala:90) > at org.apache.spark.ml.Predictor.fit(Predictor.scala:71) > at > org.apache.spark.ml.Pipeline$$anonfun$fit$2.apply(Pipeline.scala:149) > at > org.apache.spark.ml.Pipeline$$anonfun$fit$2.apply(Pipeline.scala:145) > at scala.collection.Iterator$class.foreach(Iterator.scala:893) > at scala.collection.AbstractIterator.foreach(Iterator.scala:1336) > at > scala.collection.IterableViewLike$Transformed$class.foreach(IterableViewLike.sc > thanks, > pavan. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org