[ 
https://issues.apache.org/jira/browse/SPARK-10063?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15547216#comment-15547216
 ] 

Yin Huai commented on SPARK-10063:
----------------------------------

[~ste...@apache.org] I took a quick look at hadoop 1 
(https://github.com/apache/hadoop/blob/release-1.2.1/src/mapred/org/apache/hadoop/mapreduce/lib/output/FileOutputCommitter.java#L111)
 and hadoop 2 
(https://github.com/apache/hadoop/blob/branch-2.7.3/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/java/org/apache/hadoop/mapreduce/lib/output/FileOutputCommitter.java#L326).
 Seems Hadoop 1 actually uses algorithm 2. Is my understanding correct?

> Remove DirectParquetOutputCommitter
> -----------------------------------
>
>                 Key: SPARK-10063
>                 URL: https://issues.apache.org/jira/browse/SPARK-10063
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>            Reporter: Yin Huai
>            Assignee: Reynold Xin
>            Priority: Critical
>             Fix For: 2.0.0
>
>
> When we use DirectParquetOutputCommitter on S3 and speculation is enabled, 
> there is a chance that we can loss data. 
> Here is the code to reproduce the problem.
> {code}
> import org.apache.spark.sql.functions._
> val failSpeculativeTask = sqlContext.udf.register("failSpeculativeTask", (i: 
> Int, partitionId: Int, attemptNumber: Int) => {
>   if (partitionId == 0 && i == 5) {
>     if (attemptNumber > 0) {
>       Thread.sleep(15000)
>       throw new Exception("new exception")
>     } else {
>       Thread.sleep(10000)
>     }
>   }
>   
>   i
> })
> val df = sc.parallelize((1 to 100), 20).mapPartitions { iter =>
>   val context = org.apache.spark.TaskContext.get()
>   val partitionId = context.partitionId
>   val attemptNumber = context.attemptNumber
>   iter.map(i => (i, partitionId, attemptNumber))
> }.toDF("i", "partitionId", "attemptNumber")
> df
>   .select(failSpeculativeTask($"i", $"partitionId", 
> $"attemptNumber").as("i"), $"partitionId", $"attemptNumber")
>   .write.mode("overwrite").format("parquet").save("/home/yin/outputCommitter")
> sqlContext.read.load("/home/yin/outputCommitter").count
> // The result is 99 and 5 is missing from the output.
> {code}
> What happened is that the original task finishes first and uploads its output 
> file to S3, then the speculative task somehow fails. Because we have to call 
> output stream's close method, which uploads data to S3, we actually uploads 
> the partial result generated by the failed speculative task to S3 and this 
> file overwrites the correct file generated by the original task.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to