[ https://issues.apache.org/jira/browse/SPARK-17709?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15575938#comment-15575938 ]
Xiao Li commented on SPARK-17709: --------------------------------- I can get an exactly same plan in the master branch, but my job can pass. {noformat} 'Join UsingJoin(Inner,List('companyid, 'productid)) :- Aggregate [companyid#5, productid#6], [companyid#5, productid#6, sum(cast(price#7 as bigint)) AS price#30L] : +- Project [companyid#5, productid#6, price#7, count#8] : +- SubqueryAlias testext2 : +- Relation[companyid#5,productid#6,price#7,count#8] parquet +- Aggregate [companyid#46, productid#47], [companyid#46, productid#47, sum(cast(count#49 as bigint)) AS count#41L] +- Project [companyid#46, productid#47, price#48, count#49] +- SubqueryAlias testext2 +- Relation[companyid#46,productid#47,price#48,count#49] parquet {noformat} The only difference is yours does not trigger deduplication of expression ids. Let me try it in the 2.0.1 branch. > spark 2.0 join - column resolution error > ---------------------------------------- > > Key: SPARK-17709 > URL: https://issues.apache.org/jira/browse/SPARK-17709 > Project: Spark > Issue Type: Bug > Affects Versions: 2.0.0 > Reporter: Ashish Shrowty > Labels: easyfix > > If I try to inner-join two dataframes which originated from the same initial > dataframe that was loaded using spark.sql() call, it results in an error - > // reading from Hive .. the data is stored in Parquet format in Amazon S3 > val d1 = spark.sql("select * from <hivetable>") > val df1 = d1.groupBy("key1","key2") > .agg(avg("totalprice").as("avgtotalprice")) > val df2 = d1.groupBy("key1","key2") > .agg(avg("itemcount").as("avgqty")) > df1.join(df2, Seq("key1","key2")) gives error - > org.apache.spark.sql.AnalysisException: using columns ['key1,'key2] can > not be resolved given input columns: [key1, key2, avgtotalprice, avgqty]; > If the same Dataframe is initialized via spark.read.parquet(), the above code > works. This same code above worked with Spark 1.6.2 -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org