[ 
https://issues.apache.org/jira/browse/SPARK-18137?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15614176#comment-15614176
 ] 

Apache Spark commented on SPARK-18137:
--------------------------------------

User 'windpiger' has created a pull request for this issue:
https://github.com/apache/spark/pull/15668

> RewriteDistinctAggregates UnresolvedException when a UDAF has a foldable 
> TypeCheck
> ----------------------------------------------------------------------------------
>
>                 Key: SPARK-18137
>                 URL: https://issues.apache.org/jira/browse/SPARK-18137
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 2.1.0
>            Reporter: Song Jun
>
> when run a sql with distinct(on spark github master branch), it throw 
> UnresolvedException.
> For example:
> run a test case on spark(branch master)  with sql:
> {noformat}
> SELECT percentile_approx(key, 0.99999), count(distinct key),sum(distinct key) 
> FROM src LIMIT 1
> {noformat}
> and it throw exception:
> {noformat}
> org.apache.spark.sql.catalyst.analysis.UnresolvedException: Invalid call to 
> dataType on unresolved object, tree: 'percentile_approx(CAST(src.`key` AS 
> DOUBLE), CAST(0.99999BD AS DOUBLE), 10000)
>       at 
> org.apache.spark.sql.catalyst.analysis.UnresolvedAttribute.dataType(unresolved.scala:92)
>       at 
> org.apache.spark.sql.catalyst.optimizer.RewriteDistinctAggregates$.org$apache$spark$sql$catalyst$optimizer$RewriteDistinctAggregates$$nullify(RewriteDistinctAggregates.scala:261)
>       at 
> org.apache.spark.sql.catalyst.optimizer.RewriteDistinctAggregates$.org$apache$spark$sql$catalyst$optimizer$RewriteDistinctAggregates$$evalWithinGroup$1(RewriteDistinctAggregates.scala:136)
>       at 
> org.apache.spark.sql.catalyst.optimizer.RewriteDistinctAggregates$$anonfun$16.apply(RewriteDistinctAggregates.scala:187)
>       at 
> org.apache.spark.sql.catalyst.optimizer.RewriteDistinctAggregates$$anonfun$16.apply(RewriteDistinctAggregates.scala:180)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at scala.collection.immutable.List.foreach(List.scala:381)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>       at scala.collection.immutable.List.map(List.scala:285)
>       at 
> org.apache.spark.sql.catalyst.optimizer.RewriteDistinctAggregates$.rewrite(RewriteDistinctAggregates.scala:180)
>       at 
> org.apache.spark.sql.catalyst.optimizer.RewriteDistinctAggregates$$anonfun$apply$1.applyOrElse(RewriteDistinctAggregates.scala:105)
>       at 
> org.apache.spark.sql.catalyst.optimizer.RewriteDistinctAggregates$$anonfun$apply$1.applyOrElse(RewriteDistinctAggregates.scala:104)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:301)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:301)
>       at 
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:69)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:300)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:298)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:298)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:321)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:179)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:319)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:298)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:298)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:298)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:321)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:179)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:319)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:298)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:298)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:298)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:321)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:179)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:319)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:298)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:298)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:298)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:321)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:179)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:319)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:298)
>       at 
> org.apache.spark.sql.catalyst.optimizer.RewriteDistinctAggregates$.apply(RewriteDistinctAggregates.scala:104)
>       at 
> org.apache.spark.sql.catalyst.optimizer.RewriteDistinctAggregates$.apply(RewriteDistinctAggregates.scala:102)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:85)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:82)
>       at 
> scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:57)
>       at 
> scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:66)
>       at scala.collection.mutable.WrappedArray.foldLeft(WrappedArray.scala:35)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:82)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:74)
>       at scala.collection.immutable.List.foreach(List.scala:381)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:74)
>       at 
> org.apache.spark.sql.execution.QueryExecution.optimizedPlan$lzycompute(QueryExecution.scala:74)
>       at 
> org.apache.spark.sql.execution.QueryExecution.optimizedPlan(QueryExecution.scala:74)
>       at 
> org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:78)
>       at 
> org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:76)
>       at 
> org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:83)
>       at 
> org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:83)
>       at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2572)
>       at org.apache.spark.sql.Dataset.head(Dataset.scala:1934)
>       at org.apache.spark.sql.Dataset.take(Dataset.scala:2149)
>       at 
> com.databricks.backend.daemon.driver.OutputAggregator$.withOutputAggregation0(OutputAggregator.scala:76)
>       at 
> com.databricks.backend.daemon.driver.OutputAggregator$.withOutputAggregation(OutputAggregator.scala:42)
>       at 
> com.databricks.backend.daemon.driver.SQLDriverLocal.executeSql(SQLDriverLocal.scala:100)
>       at 
> com.databricks.backend.daemon.driver.SQLDriverLocal.repl(SQLDriverLocal.scala:128)
>       at 
> com.databricks.backend.daemon.driver.DriverLocal$$anonfun$execute$1.apply(DriverLocal.scala:202)
>       at 
> com.databricks.backend.daemon.driver.DriverLocal$$anonfun$execute$1.apply(DriverLocal.scala:191)
>       at 
> com.databricks.logging.UsageLogging$$anonfun$withAttributionContext$1.apply(UsageLogging.scala:145)
>       at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
>       at 
> com.databricks.logging.UsageLogging$class.withAttributionContext(UsageLogging.scala:140)
>       at 
> com.databricks.backend.daemon.driver.DriverLocal.withAttributionContext(DriverLocal.scala:34)
>       at 
> com.databricks.logging.UsageLogging$class.withAttributionTags(UsageLogging.scala:178)
>       at 
> com.databricks.backend.daemon.driver.DriverLocal.withAttributionTags(DriverLocal.scala:34)
>       at 
> com.databricks.backend.daemon.driver.DriverLocal.execute(DriverLocal.scala:191)
>       at 
> com.databricks.backend.daemon.driver.DriverWrapper$$anonfun$tryExecutingCommand$2.apply(DriverWrapper.scala:584)
>       at 
> com.databricks.backend.daemon.driver.DriverWrapper$$anonfun$tryExecutingCommand$2.apply(DriverWrapper.scala:584)
>       at scala.util.Try$.apply(Try.scala:192)
>       at 
> com.databricks.backend.daemon.driver.DriverWrapper.tryExecutingCommand(DriverWrapper.scala:579)
>       at 
> com.databricks.backend.daemon.driver.DriverWrapper.executeCommand(DriverWrapper.scala:491)
>       at 
> com.databricks.backend.daemon.driver.DriverWrapper.runInnerLoop(DriverWrapper.scala:394)
>       at 
> com.databricks.backend.daemon.driver.DriverWrapper.runInner(DriverWrapper.scala:351)
>       at 
> com.databricks.backend.daemon.driver.DriverWrapper.run(DriverWrapper.scala:217)
>       at java.lang.Thread.run(Thread.java:745)
> {noformat}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to