Wojciech Szymanski created SPARK-18213: ------------------------------------------
Summary: Syntactic sugar over Pipeline API Key: SPARK-18213 URL: https://issues.apache.org/jira/browse/SPARK-18213 Project: Spark Issue Type: Improvement Components: ML Affects Versions: 2.0.1 Reporter: Wojciech Szymanski Priority: Minor Currently, creating ML Pipeline is based on very verbose setStages method as below: {code} val tokenizer = new RegexTokenizer() val stopWordsRemover = new StopWordsRemover() val countVectorizer = new CountVectorizer() val pipeline = new Pipeline().setStages(Array(tokenizer, stopWordsRemover, countVectorizer)) {code} What about a bit of syntactic sugar over Pipeline API? {code} val tokenizer = new RegexTokenizer() val stopWordsRemover = new StopWordsRemover() val countVectorizer = new CountVectorizer() val pipeline = tokenizer + stopWordsRemover + countVectorizer {code} Production code changes in mllib/src/main/scala/org/apache/spark/ml/Pipeline.scala: https://github.com/apache/spark/commit/181df64bf50081f3af5a84b567b677178c88524f#diff-5226e84dea43423760dc6300ddafb01b Scala example: https://github.com/apache/spark/commit/181df64bf50081f3af5a84b567b677178c88524f#diff-798e85dd9107565fabab1126f57e3d6e Java example: https://github.com/apache/spark/commit/181df64bf50081f3af5a84b567b677178c88524f#diff-69ac857220f21b5e1684444d80d6dffe Thanks in advance for your feedback. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org