[ https://issues.apache.org/jira/browse/SPARK-18227?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15656317#comment-15656317 ]
Lantao Jin commented on SPARK-18227: ------------------------------------ [~marmbrus], oh, yeah. That's the root cause, thanks. > Parquet file stream sink create a hidden directory "_spark_metadata" cause > the DataFrame read from directory failed > ------------------------------------------------------------------------------------------------------------------- > > Key: SPARK-18227 > URL: https://issues.apache.org/jira/browse/SPARK-18227 > Project: Spark > Issue Type: Bug > Components: Structured Streaming > Affects Versions: 2.0.1 > Reporter: Lantao Jin > > When we set an out directory as a streaming sink with parquet format in > structured streaming, as the streaming job running, all output parquet files > will be written to this out directory. However, it also creates a hidden > directory called "_spark_metadata" in the out directory. If we load the > parquet files from the out directory by "load", it will throw > RuntimeException and task failed. > {code:java} > val stream = modifiedData.writeStream.format("parquet") > .option("checkpointLocation", "/path/ck/") > .start("/path/out/") > val df1 = spark.read.format("parquet").load("/path/out/*") > {code} > {panel} > 16/11/02 03:49:40 WARN TaskSetManager: Lost task 1.0 in stage 110.0 (TID > 3131, cupid044.stratus.phx.ebay.com): java.lang.Ru > ntimeException: hdfs:///path/out/_spark_metadata/0 is not a Parquet file (too > s > mall) > at > org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:412) > at > org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:385) > at > org.apache.spark.sql.execution.datasources.parquet.SpecificParquetRecordReaderBase.initialize(SpecificParquetRec > ordReaderBase.java:107) > at > org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.initialize(VectorizedParquetRec > ordReader.java:109) > at > org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$buildReader$1.apply(ParquetFileFor > mat.scala:367) > at > org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$buildReader$1.apply(ParquetFileFor > mat.scala:341) > at > org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:116) > at > org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:91) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.scan_nextBatch$(Unknown > Source) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithKeys$(Unknown > Sour > ce) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown > Source) > at > org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) > at > org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370) > at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) > at > org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47) > {panel} > That's because the ParquetFileReader reads the metadata file as a parquet > format. > I thought the smooth way to fix it is moving the metadata directory to > another path, but from the code DataSource.scala, it has less path > information except out directory path to store into. So maybe skipping hidden > files and paths could be a better way. But from the stack trace above, it > failed in initialize() in SpecificParquetRecordReaderBase. It means that > metadata files in hidden directory have been traversed in upper > invocation(FileScanRDD). But in there, no format info can be known to skip a > hidden directory(or over authority). > So, what is the best way to fix it? -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org