[ https://issues.apache.org/jira/browse/SPARK-13510?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15671415#comment-15671415 ]
Sital Kedia commented on SPARK-13510: ------------------------------------- [~shenhong] - We are seeing the same issue on our side. Do you have a PR for this yet? > Shuffle may throw FetchFailedException: Direct buffer memory > ------------------------------------------------------------ > > Key: SPARK-13510 > URL: https://issues.apache.org/jira/browse/SPARK-13510 > Project: Spark > Issue Type: Bug > Components: Spark Core > Affects Versions: 1.6.0 > Reporter: Hong Shen > Attachments: spark-13510.diff > > > In our cluster, when I test spark-1.6.0 with a sql, it throw exception and > failed. > {code} > 16/02/17 15:36:03 INFO storage.ShuffleBlockFetcherIterator: Sending request > for 1 blocks (915.4 MB) from 10.196.134.220:7337 > 16/02/17 15:36:03 INFO shuffle.ExternalShuffleClient: External shuffle fetch > from 10.196.134.220:7337 (executor id 122) > 16/02/17 15:36:03 INFO client.TransportClient: Sending fetch chunk request 0 > to /10.196.134.220:7337 > 16/02/17 15:36:36 WARN server.TransportChannelHandler: Exception in > connection from /10.196.134.220:7337 > java.lang.OutOfMemoryError: Direct buffer memory > at java.nio.Bits.reserveMemory(Bits.java:658) > at java.nio.DirectByteBuffer.<init>(DirectByteBuffer.java:123) > at java.nio.ByteBuffer.allocateDirect(ByteBuffer.java:306) > at io.netty.buffer.PoolArena$DirectArena.newChunk(PoolArena.java:645) > at io.netty.buffer.PoolArena.allocateNormal(PoolArena.java:228) > at io.netty.buffer.PoolArena.allocate(PoolArena.java:212) > at io.netty.buffer.PoolArena.allocate(PoolArena.java:132) > at > io.netty.buffer.PooledByteBufAllocator.newDirectBuffer(PooledByteBufAllocator.java:271) > at > io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:155) > at > io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:146) > at > io.netty.buffer.AbstractByteBufAllocator.ioBuffer(AbstractByteBufAllocator.java:107) > at > io.netty.channel.AdaptiveRecvByteBufAllocator$HandleImpl.allocate(AdaptiveRecvByteBufAllocator.java:104) > at > io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:117) > at > io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511) > at > io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468) > at > io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382) > at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354) > at > io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111) > at java.lang.Thread.run(Thread.java:744) > 16/02/17 15:36:36 ERROR client.TransportResponseHandler: Still have 1 > requests outstanding when connection from /10.196.134.220:7337 is closed > 16/02/17 15:36:36 ERROR shuffle.RetryingBlockFetcher: Failed to fetch block > shuffle_3_81_2, and will not retry (0 retries) > {code} > The reason is that when shuffle a big block(like 1G), task will allocate > the same memory, it will easily throw "FetchFailedException: Direct buffer > memory". > If I add -Dio.netty.noUnsafe=true spark.executor.extraJavaOptions, it will > throw > {code} > java.lang.OutOfMemoryError: Java heap space > at > io.netty.buffer.PoolArena$HeapArena.newUnpooledChunk(PoolArena.java:607) > at io.netty.buffer.PoolArena.allocateHuge(PoolArena.java:237) > at io.netty.buffer.PoolArena.allocate(PoolArena.java:215) > at io.netty.buffer.PoolArena.allocate(PoolArena.java:132) > {code} > > In mapreduce shuffle, it will firstly judge whether the block can cache in > memery, but spark doesn't. > If the block is more than we can cache in memory, we should write to disk. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org