[ https://issues.apache.org/jira/browse/SPARK-18484?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15673347#comment-15673347 ]
Damian Momot commented on SPARK-18484: -------------------------------------- Only thing which comes to my mind would be something like (+ it would need to use http://www.scala-lang.org/api/2.9.2/scala/annotation/target/package.html): {code} case class TestClass(id: String, @DecimalPrecision(10, 2) money: BigDecimal) {code} But AFAIK it's not "scala-way", don't have better idea :) > case class datasets - ability to specify decimal precision and scale > -------------------------------------------------------------------- > > Key: SPARK-18484 > URL: https://issues.apache.org/jira/browse/SPARK-18484 > Project: Spark > Issue Type: Improvement > Affects Versions: 2.0.0, 2.0.1 > Reporter: Damian Momot > > Currently when using decimal type (BigDecimal in scala case class) there's no > way to enforce precision and scale. This is quite critical when saving data - > regarding space usage and compatibility with external systems (for example > Hive table) because spark saves data as Decimal(38,18) > {code} > case class TestClass(id: String, money: BigDecimal) > val testDs = spark.createDataset(Seq( > TestClass("1", BigDecimal("22.50")), > TestClass("2", BigDecimal("500.66")) > )) > testDs.printSchema() > {code} > {code} > root > |-- id: string (nullable = true) > |-- money: decimal(38,18) (nullable = true) > {code} > Workaround is to convert dataset to dataframe before saving and manually cast > to specific decimal scale/precision: > {code} > import org.apache.spark.sql.types.DecimalType > val testDf = testDs.toDF() > testDf > .withColumn("money", testDf("money").cast(DecimalType(10,2))) > .printSchema() > {code} > {code} > root > |-- id: string (nullable = true) > |-- money: decimal(10,2) (nullable = true) > {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org