[ https://issues.apache.org/jira/browse/SPARK-18020?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15702167#comment-15702167 ]
Basile Deustua commented on SPARK-18020: ---------------------------------------- Same here > Kinesis receiver does not snapshot when shard completes > ------------------------------------------------------- > > Key: SPARK-18020 > URL: https://issues.apache.org/jira/browse/SPARK-18020 > Project: Spark > Issue Type: Bug > Components: DStreams > Affects Versions: 2.0.0 > Reporter: Yonathan Randolph > Priority: Minor > Labels: kinesis > > When a kinesis shard is split or combined and the old shard ends, the Amazon > Kinesis Client library [calls > IRecordProcessor.shutdown|https://github.com/awslabs/amazon-kinesis-client/blob/v1.7.0/src/main/java/com/amazonaws/services/kinesis/clientlibrary/lib/worker/ShutdownTask.java#L100] > and expects that {{IRecordProcessor.shutdown}} must checkpoint the sequence > number {{ExtendedSequenceNumber.SHARD_END}} before returning. Unfortunately, > spark’s > [KinesisRecordProcessor|https://github.com/apache/spark/blob/v2.0.1/external/kinesis-asl/src/main/scala/org/apache/spark/streaming/kinesis/KinesisRecordProcessor.scala] > sometimes does not checkpoint SHARD_END. This results in an error message, > and spark is then blocked indefinitely from processing any items from the > child shards. > This issue has also been raised on StackOverflow: [resharding while spark > running on kinesis > stream|http://stackoverflow.com/questions/38898691/resharding-while-spark-running-on-kinesis-stream] > Exception that is logged: > {code} > 16/10/19 19:37:49 ERROR worker.ShutdownTask: Application exception. > java.lang.IllegalArgumentException: Application didn't checkpoint at end of > shard shardId-000000000030 > at > com.amazonaws.services.kinesis.clientlibrary.lib.worker.ShutdownTask.call(ShutdownTask.java:106) > at > com.amazonaws.services.kinesis.clientlibrary.lib.worker.MetricsCollectingTaskDecorator.call(MetricsCollectingTaskDecorator.java:49) > at > com.amazonaws.services.kinesis.clientlibrary.lib.worker.MetricsCollectingTaskDecorator.call(MetricsCollectingTaskDecorator.java:24) > at java.util.concurrent.FutureTask.run(FutureTask.java:266) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > {code} > Command used to split shard: > {code} > aws kinesis --region us-west-1 split-shard --stream-name my-stream > --shard-to-split shardId-000000000030 --new-starting-hash-key > 5316911983139663491615228241121378303 > {code} > After the spark-streaming job has hung, examining the DynamoDB table > indicates that the parent shard processor has not reached > {{ExtendedSequenceNumber.SHARD_END}} and the child shards are still at > {{ExtendedSequenceNumber.TRIM_HORIZON}} waiting for the parent to finish: > {code} > aws kinesis --region us-west-1 describe-stream --stream-name my-stream > { > "StreamDescription": { > "RetentionPeriodHours": 24, > "StreamName": "my-stream", > "Shards": [ > { > "ShardId": "shardId-000000000030", > "HashKeyRange": { > "EndingHashKey": > "10633823966279326983230456482242756606", > "StartingHashKey": "0" > }, > ... > }, > { > "ShardId": "shardId-000000000062", > "HashKeyRange": { > "EndingHashKey": "5316911983139663491615228241121378302", > "StartingHashKey": "0" > }, > "ParentShardId": "shardId-000000000030", > "SequenceNumberRange": { > "StartingSequenceNumber": > "49566806087883755242230188435465744452396445937434624994" > } > }, > { > "ShardId": "shardId-000000000063", > "HashKeyRange": { > "EndingHashKey": > "10633823966279326983230456482242756606", > "StartingHashKey": "5316911983139663491615228241121378303" > }, > "ParentShardId": "shardId-000000000030", > "SequenceNumberRange": { > "StartingSequenceNumber": > "49566806087906055987428719058607280170669094298940605426" > } > }, > ... > ], > "StreamStatus": "ACTIVE" > } > } > aws dynamodb --region us-west-1 scan --table-name my-processor > { > "Items": [ > { > "leaseOwner": { > "S": "localhost:fd385c95-5d19-4678-926f-b6d5f5503cbe" > }, > "leaseCounter": { > "N": "49318" > }, > "ownerSwitchesSinceCheckpoint": { > "N": "62" > }, > "checkpointSubSequenceNumber": { > "N": "0" > }, > "checkpoint": { > "S": > "49566573572821264975247582655142547856950135436343247330" > }, > "parentShardId": { > "SS": [ > "shardId-000000000014" > ] > }, > "leaseKey": { > "S": "shardId-000000000030" > } > }, > { > "leaseOwner": { > "S": "localhost:ca44dc83-2580-4bf3-903f-e7ccc8a3ab02" > }, > "leaseCounter": { > "N": "25439" > }, > "ownerSwitchesSinceCheckpoint": { > "N": "69" > }, > "checkpointSubSequenceNumber": { > "N": "0" > }, > "checkpoint": { > "S": "TRIM_HORIZON" > }, > "parentShardId": { > "SS": [ > "shardId-000000000030" > ] > }, > "leaseKey": { > "S": "shardId-000000000062" > } > }, > { > "leaseOwner": { > "S": "localhost:94bf603f-780b-4121-87a4-bdf501723f83" > }, > "leaseCounter": { > "N": "25443" > }, > "ownerSwitchesSinceCheckpoint": { > "N": "59" > }, > "checkpointSubSequenceNumber": { > "N": "0" > }, > "checkpoint": { > "S": "TRIM_HORIZON" > }, > "parentShardId": { > "SS": [ > "shardId-000000000030" > ] > }, > "leaseKey": { > "S": "shardId-000000000063" > } > }, > ... > ] > } > {code} > Workaround: I manually edited the DynamoDB table to delete the checkpoints > for the parent shards. The child shards were then able to begin processing. > I’m not sure whether this resulted in a few items being lost though. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org