[ 
https://issues.apache.org/jira/browse/SPARK-18699?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15719887#comment-15719887
 ] 

Jakub Nowacki commented on SPARK-18699:
---------------------------------------

Yes, my understanding was that it should put nullify the value if it fails to 
parse it in PERMISSIVE mode or drop the whole row (line) in DROPMALFORMED as 
described in the docs: 
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrameReader,
 i.e.: 
* mode (default PERMISSIVE): allows a mode for dealing with corrupt records 
during parsing.
** PERMISSIVE : sets other fields to null when it meets a corrupted record. 
When a schema is set by user, it sets null for extra fields.
** DROPMALFORMED : ignores the whole corrupted records.
** FAILFAST : throws an exception when it meets corrupted records.

> Spark CSV parsing types other than String throws exception when malformed
> -------------------------------------------------------------------------
>
>                 Key: SPARK-18699
>                 URL: https://issues.apache.org/jira/browse/SPARK-18699
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 2.0.2
>            Reporter: Jakub Nowacki
>
> If CSV is read and the schema contains any other type than String, exception 
> is thrown when the string value in CSV is malformed; e.g. if the timestamp 
> does not match the defined one, an exception is thrown:
> {code}
> Caused by: java.lang.IllegalArgumentException
>       at java.sql.Date.valueOf(Date.java:143)
>       at 
> org.apache.spark.sql.catalyst.util.DateTimeUtils$.stringToTime(DateTimeUtils.scala:137)
>       at 
> org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$$anonfun$castTo$6.apply$mcJ$sp(CSVInferSchema.scala:272)
>       at 
> org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$$anonfun$castTo$6.apply(CSVInferSchema.scala:272)
>       at 
> org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$$anonfun$castTo$6.apply(CSVInferSchema.scala:272)
>       at scala.util.Try.getOrElse(Try.scala:79)
>       at 
> org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$.castTo(CSVInferSchema.scala:269)
>       at 
> org.apache.spark.sql.execution.datasources.csv.CSVRelation$$anonfun$csvParser$3.apply(CSVRelation.scala:116)
>       at 
> org.apache.spark.sql.execution.datasources.csv.CSVRelation$$anonfun$csvParser$3.apply(CSVRelation.scala:85)
>       at 
> org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anonfun$buildReader$1$$anonfun$apply$2.apply(CSVFileFormat.scala:128)
>       at 
> org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anonfun$buildReader$1$$anonfun$apply$2.apply(CSVFileFormat.scala:127)
>       at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
>       at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
>       at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
>       at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:91)
>       at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
>  Source)
>       at 
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
>       at 
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
>       at 
> org.apache.spark.sql.execution.datasources.DefaultWriterContainer$$anonfun$writeRows$1.apply$mcV$sp(WriterContainer.scala:253)
>       at 
> org.apache.spark.sql.execution.datasources.DefaultWriterContainer$$anonfun$writeRows$1.apply(WriterContainer.scala:252)
>       at 
> org.apache.spark.sql.execution.datasources.DefaultWriterContainer$$anonfun$writeRows$1.apply(WriterContainer.scala:252)
>       at 
> org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1348)
>       at 
> org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:258)
>       ... 8 more
> {code}
> It behaves similarly with Integer and Long types, from what I've seen.
> To my understanding modes PERMISSIVE and DROPMALFORMED should just null the 
> value or drop the line, but instead they kill the job.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to