[ https://issues.apache.org/jira/browse/SPARK-3803?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14161281#comment-14161281 ]
Xiangrui Meng commented on SPARK-3803: -------------------------------------- In `computeCovariance`, we generate a warning message if `numCols > 10000`. https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala#L307 We could do the same in `Gram`, or we can throw an exception if `numCols` is too big. > ArrayIndexOutOfBoundsException found in executing computePrincipalComponents > ---------------------------------------------------------------------------- > > Key: SPARK-3803 > URL: https://issues.apache.org/jira/browse/SPARK-3803 > Project: Spark > Issue Type: Bug > Components: MLlib > Affects Versions: 1.1.0 > Reporter: Masaru Dobashi > > When I executed computePrincipalComponents method of RowMatrix, I got > java.lang.ArrayIndexOutOfBoundsException. > {code} > 14/10/05 20:16:31 INFO DAGScheduler: Failed to run reduce at > RDDFunctions.scala:111 > org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in > stage 31.0 failed 1 times, most recent failure: Lost task 0.0 in stage 31.0 > (TID 611, localhost): java.lang.ArrayIndexOutOfBoundsException: 4878161 > > org.apache.spark.mllib.linalg.distributed.RowMatrix$.org$apache$spark$mllib$linalg$distributed$RowMatrix$$dspr(RowMatrix.scala:460) > > org.apache.spark.mllib.linalg.distributed.RowMatrix$$anonfun$3.apply(RowMatrix.scala:114) > > org.apache.spark.mllib.linalg.distributed.RowMatrix$$anonfun$3.apply(RowMatrix.scala:113) > > scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:144) > > scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:144) > scala.collection.Iterator$class.foreach(Iterator.scala:727) > scala.collection.AbstractIterator.foreach(Iterator.scala:1157) > > scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:144) > scala.collection.AbstractIterator.foldLeft(Iterator.scala:1157) > > scala.collection.TraversableOnce$class.aggregate(TraversableOnce.scala:201) > scala.collection.AbstractIterator.aggregate(Iterator.scala:1157) > > org.apache.spark.mllib.rdd.RDDFunctions$$anonfun$4.apply(RDDFunctions.scala:99) > > org.apache.spark.mllib.rdd.RDDFunctions$$anonfun$4.apply(RDDFunctions.scala:99) > > org.apache.spark.mllib.rdd.RDDFunctions$$anonfun$5.apply(RDDFunctions.scala:100) > > org.apache.spark.mllib.rdd.RDDFunctions$$anonfun$5.apply(RDDFunctions.scala:100) > org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596) > org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596) > > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) > org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) > org.apache.spark.rdd.RDD.iterator(RDD.scala:229) > > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) > org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) > org.apache.spark.rdd.RDD.iterator(RDD.scala:229) > > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68) > > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) > org.apache.spark.scheduler.Task.run(Task.scala:54) > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:177) > > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > java.lang.Thread.run(Thread.java:745) > {code} > The RowMatrix instance was generated from the result of TF-IDF like the > following. > {code} > scala> val hashingTF = new HashingTF() > scala> val tf = hashingTF.transform(texts) > scala> import org.apache.spark.mllib.feature.IDF > scala> tf.cache() > scala> val idf = new IDF().fit(tf) > scala> val tfidf: RDD[Vector] = idf.transform(tf) > scala> import org.apache.spark.mllib.linalg.distributed.RowMatrix > scala> val mat = new RowMatrix(tfidf) > scala> val pc = mat.computePrincipalComponents(2) > {code} > I think this was because I created HashingTF instance with default > numFeatures and Array is used in RowMatrix#computeGramianMatrix method > like the following. > {code} > /** > * Computes the Gramian matrix `A^T A`. > */ > def computeGramianMatrix(): Matrix = { > val n = numCols().toInt > val nt: Int = n * (n + 1) / 2 > // Compute the upper triangular part of the gram matrix. > val GU = rows.treeAggregate(new BDV[Double](new Array[Double](nt)))( > seqOp = (U, v) => { > RowMatrix.dspr(1.0, v, U.data) > U > }, combOp = (U1, U2) => U1 += U2) > RowMatrix.triuToFull(n, GU.data) > } > {code} > When the size of Vectors generated by TF-IDF is too large, it makes "nt" to > have undesirable value (and undesirable size of Array used in treeAggregate), > since n * (n + 1) / 2 exceeded Int.MaxValue. > Is this surmise correct? > And, of course, I could avoid this situation by creating instance of > HashingTF with smaller numFeatures. > But this may not be fundamental solution. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org