[ 
https://issues.apache.org/jira/browse/SPARK-18766?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Xiao Li reassigned SPARK-18766:
-------------------------------

    Assignee: Xiao Li

> Push Down Filter Through BatchEvalPython
> ----------------------------------------
>
>                 Key: SPARK-18766
>                 URL: https://issues.apache.org/jira/browse/SPARK-18766
>             Project: Spark
>          Issue Type: Improvement
>          Components: PySpark, SQL
>    Affects Versions: 2.0.2
>            Reporter: Xiao Li
>            Assignee: Xiao Li
>             Fix For: 2.2.0
>
>
> Currently, when users use Python UDF in Filter, {{BatchEvalPython}} is always 
> generated below {{FilterExec}}. However, not all the predicates need to be 
> evaluated after Python UDF execution. Thus, we can push down the predicates 
> through {{BatchEvalPython}} .
> {noformat}
> >>> df = spark.createDataFrame([(1, "1"), (2, "2"), (1, "2"), (1, "2")], 
> >>> ["key", "value"])
> >>> from pyspark.sql.functions import udf, col
> >>> from pyspark.sql.types import BooleanType
> >>> my_filter = udf(lambda a: a < 2, BooleanType())
> >>> sel = df.select(col("key"), col("value")).filter((my_filter(col("key"))) 
> >>> & (df.value < "2"))
> >>> sel.explain(True)
> {noformat}
> {noformat}
> == Physical Plan ==
> *Project [key#0L, value#1]
> +- *Filter ((isnotnull(value#1) && pythonUDF0#9) && (value#1 < 2))
>    +- BatchEvalPython [<lambda>(key#0L)], [key#0L, value#1, pythonUDF0#9]
>       +- Scan ExistingRDD[key#0L,value#1]
> {noformat}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to