[ https://issues.apache.org/jira/browse/SPARK-18819?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Michael Kamprath updated SPARK-18819: ------------------------------------- Description: When I create a data frame in PySpark with a small row count (less than number executors), then write it to a parquet file, then load that parquet file into a new data frame, and finally do any sort of read against the loaded new data frame, Spark fails with an {{ExecutorLostFailure}}. Example code to replicate this issue: {code} from pyspark.sql.types import * rdd = sc.parallelize([('row1',1,4.33,'name'),('row2',2,3.14,'string')]) my_schema = StructType([ StructField("id", StringType(), True), StructField("value1", IntegerType(), True), StructField("value2", DoubleType(), True), StructField("name",StringType(), True) ]) df = spark.createDataFrame( rdd, schema=my_schema) df.write.parquet('hdfs://master:9000/user/michael/test_data',mode='overwrite') newdf = spark.read.parquet('hdfs://master:9000/user/michael/test_data/') newdf.take(1) {code} The error I get when the {{take}} step runs is: {code} Py4JJavaError: An error occurred while calling o54.collectToPython. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 8, 10.10.10.4): ExecutorLostFailure (executor 0 exited caused by one of the running tasks) Reason: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages. Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1454) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1441) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1441) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1667) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1622) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1611) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1873) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1886) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1899) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:347) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:39) at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply$mcI$sp(Dataset.scala:2526) at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:2523) at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:2523) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57) at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2546) at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:2523) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:280) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:214) at java.lang.Thread.run(Thread.java:745) {code} I have tested this against HDFS 2.7 and QFS 1.2. All have the same results. However, it doesn't break when running spark locally and reading/writing to the local file system. I generally discovered this when processing larger files that have individual parquet part files with a single row in them. The same problem manifested then. was: When I create a data frame in PySpark with a small row count (less than number executors), then write it to a parquet file, then load that parquet file into a new data frame, and finally do any sort of read against the loaded new data frame, Spark fails with an {{ExecutorLostFailure}}. Example code to replicate this issue: {code} from pyspark.sql.types import * rdd = sc.parallelize([('row1',1,4.33,'name'),('row2',2,3.14,'string')]) my_schema = StructType([ StructField("id", StringType(), True), StructField("value1", IntegerType(), True), StructField("value2", DoubleType(), True), StructField("name",StringType(), True) ]) df = spark.createDataFrame( rdd, schema=my_schema) df.write.parquet('hdfs://master:9000/user/michael/test_data',mode='overwrite') newdf = spark.read.parquet('hdfs://master:9000/user/michael/test_data/') newdf.take(1) {code} The error I get when the {{take}} step runs is: {code} Py4JJavaError: An error occurred while calling o54.collectToPython. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 8, 10.10.10.4): ExecutorLostFailure (executor 0 exited caused by one of the running tasks) Reason: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages. Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1454) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1441) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1441) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1667) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1622) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1611) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1873) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1886) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1899) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:347) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:39) at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply$mcI$sp(Dataset.scala:2526) at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:2523) at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:2523) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57) at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2546) at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:2523) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:280) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:214) at java.lang.Thread.run(Thread.java:745) {code} I have tested this against HDFS 2.7, local file system, and QFS 1.2. All have the same results. I generally discovered this when processing larger files that have individual parquet part files with a single row in them. The same problem manifested then. > Failure to read single-row Parquet files > ---------------------------------------- > > Key: SPARK-18819 > URL: https://issues.apache.org/jira/browse/SPARK-18819 > Project: Spark > Issue Type: Bug > Components: Input/Output, PySpark > Affects Versions: 2.0.2 > Environment: Ubuntu 14.04 LTS on ARM 7.1 > Reporter: Michael Kamprath > Priority: Critical > > When I create a data frame in PySpark with a small row count (less than > number executors), then write it to a parquet file, then load that parquet > file into a new data frame, and finally do any sort of read against the > loaded new data frame, Spark fails with an {{ExecutorLostFailure}}. > Example code to replicate this issue: > {code} > from pyspark.sql.types import * > rdd = sc.parallelize([('row1',1,4.33,'name'),('row2',2,3.14,'string')]) > my_schema = StructType([ > StructField("id", StringType(), True), > StructField("value1", IntegerType(), True), > StructField("value2", DoubleType(), True), > StructField("name",StringType(), True) > ]) > df = spark.createDataFrame( rdd, schema=my_schema) > df.write.parquet('hdfs://master:9000/user/michael/test_data',mode='overwrite') > newdf = spark.read.parquet('hdfs://master:9000/user/michael/test_data/') > newdf.take(1) > {code} > The error I get when the {{take}} step runs is: > {code} > Py4JJavaError: An error occurred while calling o54.collectToPython. > : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 > in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 > (TID 8, 10.10.10.4): ExecutorLostFailure (executor 0 exited caused by one of > the running tasks) Reason: Remote RPC client disassociated. Likely due to > containers exceeding thresholds, or network issues. Check driver logs for > WARN messages. > Driver stacktrace: > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1454) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1441) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1441) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811) > at scala.Option.foreach(Option.scala:257) > at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1667) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1622) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1611) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) > at > org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1873) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1886) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1899) > at > org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:347) > at > org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:39) > at > org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply$mcI$sp(Dataset.scala:2526) > at > org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:2523) > at > org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:2523) > at > org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57) > at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2546) > at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:2523) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:498) > at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237) > at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) > at py4j.Gateway.invoke(Gateway.java:280) > at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) > at py4j.commands.CallCommand.execute(CallCommand.java:79) > at py4j.GatewayConnection.run(GatewayConnection.java:214) > at java.lang.Thread.run(Thread.java:745) > {code} > I have tested this against HDFS 2.7 and QFS 1.2. All have the same results. > However, it doesn't break when running spark locally and reading/writing to > the local file system. > I generally discovered this when processing larger files that have individual > parquet part files with a single row in them. The same problem manifested > then. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org