[ https://issues.apache.org/jira/browse/SPARK-18783?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Joseph K. Bradley closed SPARK-18783. ------------------------------------- Resolution: Won't Fix > ML StringIndexer does not work with nested fields > ------------------------------------------------- > > Key: SPARK-18783 > URL: https://issues.apache.org/jira/browse/SPARK-18783 > Project: Spark > Issue Type: Bug > Components: ML > Affects Versions: 2.0.0 > Reporter: manuel garrido > > Using StringIndexer.transform with a nested field (from parsing json data) > results in the output dataframe not having the new column. > {code} > sample = [ > {'city': u'', > 'device': {u'make': u'HTC', > u'os': u'Android'} > }, > {'city': u'Bangalore', > 'device': {u'make': u'Xiaomi', > u'os': u'Android'} > }, > {'city': u'Overpelt', > 'device': {u'make': u'Samsung', > u'os': u'Android'} > } > ] > sample_df = sc.parallelize(sample).toDF() > # First we use a StringIndexer with a non nested field > city_indexer = StringIndexer(inputCol="city", outputCol="cityIndex", > handleInvalid="skip") > city_indexed = city_indexer.fit(sample_df).transform(sample_df) > print([i.asDict() for i in city_indexed.collect()]) > >>>[{'device': {u'make': u'HTC', u'os': u'Android'}, 'city': u'', > >>>'cityIndex': 0.0}, {'device': {u'make': u'Xiaomi', u'os': u'Android'}, > >>>'city': u'Bangalore', 'cityIndex': 2.0}, {'device': {u'make': u'Samsung', > >>>u'os': u'Android'}, 'city': u'Overpelt', 'cityIndex': 1.0}] > # Now we try with a nested field > os_indexer = StringIndexer(inputCol="device.os", outputCol="osIndex", > handleInvalid="skip") > os_indexed = os_indexer.fit(sample_df).transform(sample_df) > print([i.asDict() for i in os_indexed.collect()]) > >>>[{'device': {u'make': u'HTC', u'os': u'Android'}, 'city': u''}, {'device': > >>>{u'make': u'Xiaomi', u'os': u'Android'}, 'city': u'Bangalore'}, {'device': > >>>{u'make': u'Samsung', u'os': u'Android'}, 'city': u'Overpelt'}] #===> we > >>>see the field osIndex is not showing up > #If we rename the same field device.os as a flat field it works as expected > os_indexer = StringIndexer(inputCol="device_os", outputCol="osIndex", > handleInvalid="skip") > os_indexed = os_indexer.fit( > sample_df.withColumn('device_os', col('device.os')) > ).transform( > sample_df.withColumn('device_os', col('device.os')) > ) > print([i.asDict() for i in os_indexed.collect()]) > {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org