[ https://issues.apache.org/jira/browse/SPARK-13525?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Hardik Gupta updated SPARK-13525: --------------------------------- Comment: was deleted (was: Even I am facing this issue when am running in cluster of 5 nodes. My printschema works but head fails ------------------------------------------------ My code: library(SparkR, lib.loc = "/opt/BIG-DATA/spark-1.5.0-bin-hadoop2.6/R/lib") sc <- sparkR.init(master = "spark://10.103.25.39:7077", appName = "demo", sparkHome = "/opt/cloudera/parcels/CDH-5.5.1-1.cdh5.5.1.p0.11/lib/spark", sparkEnvir = list(spark.executor.memory = '16m')) sqlContext <- sparkRSQL.init(sc) df <- createDataFrame(sqlContext, iris) head(df) printSchema(df) sparkR.stop() ------------------------------------ I get the following logs # spark-submit --master spark://10.103.25.39:7077 /opt/BIG-DATA/spark-1.5.0-bin-hadoop2.6/sample2.R Loading required package: methods Attaching package: ‘SparkR’ The following objects are masked from ‘package:stats’: filter, na.omit The following objects are masked from ‘package:base’: intersect, rbind, sample, subset, summary, table, transform Warning message: package ‘SparkR’ was built under R version 3.2.1 16/12/15 16:55:12 INFO SparkContext: Running Spark version 1.5.0-cdh5.5.1 16/12/15 16:55:13 INFO SecurityManager: Changing view acls to: root 16/12/15 16:55:13 INFO SecurityManager: Changing modify acls to: root 16/12/15 16:55:13 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root) 16/12/15 16:55:13 INFO Slf4jLogger: Slf4jLogger started 16/12/15 16:55:14 INFO Remoting: Starting remoting 16/12/15 16:55:14 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@10.103.40.40:38177] 16/12/15 16:55:14 INFO Remoting: Remoting now listens on addresses: [akka.tcp://sparkDriver@10.103.40.40:38177] 16/12/15 16:55:14 INFO Utils: Successfully started service 'sparkDriver' on port 38177. 16/12/15 16:55:14 INFO SparkEnv: Registering MapOutputTracker 16/12/15 16:55:14 INFO SparkEnv: Registering BlockManagerMaster 16/12/15 16:55:14 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-54d59b34-eb65-4af4-9f02-07590932fc4f 16/12/15 16:55:14 INFO MemoryStore: MemoryStore started with capacity 530.0 MB 16/12/15 16:55:14 INFO HttpFileServer: HTTP File server directory is /tmp/spark-38ff69cb-a858-430e-9104-7ea7b7a4b3be/httpd-7d4b481b-c3b2-43e4-b2bc-bf499798b1fa 16/12/15 16:55:14 INFO HttpServer: Starting HTTP Server 16/12/15 16:55:14 INFO Server: jetty-8.y.z-SNAPSHOT 16/12/15 16:55:14 INFO AbstractConnector: Started SocketConnector@0.0.0.0:33746 16/12/15 16:55:14 INFO Utils: Successfully started service 'HTTP file server' on port 33746. 16/12/15 16:55:14 INFO SparkEnv: Registering OutputCommitCoordinator 16/12/15 16:55:14 INFO Server: jetty-8.y.z-SNAPSHOT 16/12/15 16:55:14 INFO AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040 16/12/15 16:55:14 INFO Utils: Successfully started service 'SparkUI' on port 4040. 16/12/15 16:55:14 INFO SparkUI: Started SparkUI at http://10.103.40.40:4040 16/12/15 16:55:14 INFO Utils: Copying /opt/BIG-DATA/spark-1.5.0-bin-hadoop2.6/sample2.R to /tmp/spark-38ff69cb-a858-430e-9104-7ea7b7a4b3be/userFiles-57695a67-ea9b-484c-af69-94298e02997b/sample2.R 16/12/15 16:55:14 INFO SparkContext: Added file file:/opt/BIG-DATA/spark-1.5.0-bin-hadoop2.6/sample2.R at http://10.103.40.40:33746/files/sample2.R with timestamp 1481801114815 16/12/15 16:55:14 WARN MetricsSystem: Using default name DAGScheduler for source because spark.app.id is not set. 16/12/15 16:55:14 INFO AppClient$ClientEndpoint: Connecting to master spark://10.103.25.39:7077... 16/12/15 16:55:15 INFO SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20161215165352-0123 16/12/15 16:55:15 INFO AppClient$ClientEndpoint: Executor added: app-20161215165352-0123/0 on worker-20161208195327-10.103.40.207-7078 (10.103.40.207:7078) with 4 cores 16/12/15 16:55:15 INFO SparkDeploySchedulerBackend: Granted executor ID app-20161215165352-0123/0 on hostPort 10.103.40.207:7078 with 4 cores, 16.0 MB RAM 16/12/15 16:55:15 INFO AppClient$ClientEndpoint: Executor added: app-20161215165352-0123/1 on worker-20161208184218-10.103.25.39-7078 (10.103.25.39:7078) with 4 cores 16/12/15 16:55:15 INFO SparkDeploySchedulerBackend: Granted executor ID app-20161215165352-0123/1 on hostPort 10.103.25.39:7078 with 4 cores, 16.0 MB RAM 16/12/15 16:55:15 INFO AppClient$ClientEndpoint: Executor added: app-20161215165352-0123/2 on worker-20161208195437-10.103.40.186-7078 (10.103.40.186:7078) with 4 cores 16/12/15 16:55:15 INFO SparkDeploySchedulerBackend: Granted executor ID app-20161215165352-0123/2 on hostPort 10.103.40.186:7078 with 4 cores, 16.0 MB RAM 16/12/15 16:55:15 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 34755. 16/12/15 16:55:15 INFO NettyBlockTransferService: Server created on 34755 16/12/15 16:55:15 INFO BlockManagerMaster: Trying to register BlockManager 16/12/15 16:55:15 INFO BlockManagerMasterEndpoint: Registering block manager 10.103.40.40:34755 with 530.0 MB RAM, BlockManagerId(driver, 10.103.40.40, 34755) 16/12/15 16:55:15 INFO BlockManagerMaster: Registered BlockManager 16/12/15 16:55:15 INFO AppClient$ClientEndpoint: Executor updated: app-20161215165352-0123/2 is now LOADING 16/12/15 16:55:15 INFO AppClient$ClientEndpoint: Executor updated: app-20161215165352-0123/0 is now LOADING 16/12/15 16:55:15 INFO AppClient$ClientEndpoint: Executor updated: app-20161215165352-0123/1 is now LOADING 16/12/15 16:55:15 INFO AppClient$ClientEndpoint: Executor updated: app-20161215165352-0123/0 is now RUNNING 16/12/15 16:55:15 INFO AppClient$ClientEndpoint: Executor updated: app-20161215165352-0123/1 is now RUNNING 16/12/15 16:55:15 INFO AppClient$ClientEndpoint: Executor updated: app-20161215165352-0123/2 is now RUNNING 16/12/15 16:55:16 INFO EventLoggingListener: Logging events to hdfs://bigdata:8020/user/spark/applicationHistory/app-20161215165352-0123 16/12/15 16:55:16 INFO SparkDeploySchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0 16/12/15 16:55:16 INFO SparkContext: Starting job: collectPartitions at NativeMethodAccessorImpl.java:-2 16/12/15 16:55:16 INFO DAGScheduler: Got job 0 (collectPartitions at NativeMethodAccessorImpl.java:-2) with 1 output partitions 16/12/15 16:55:16 INFO DAGScheduler: Final stage: ResultStage 0(collectPartitions at NativeMethodAccessorImpl.java:-2) 16/12/15 16:55:16 INFO DAGScheduler: Parents of final stage: List() 16/12/15 16:55:16 INFO DAGScheduler: Missing parents: List() 16/12/15 16:55:16 INFO DAGScheduler: Submitting ResultStage 0 (ParallelCollectionRDD[0] at parallelize at RRDD.scala:454), which has no missing parents 16/12/15 16:55:16 INFO MemoryStore: ensureFreeSpace(1280) called with curMem=0, maxMem=555755765 16/12/15 16:55:16 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 1280.0 B, free 530.0 MB) 16/12/15 16:55:16 INFO MemoryStore: ensureFreeSpace(854) called with curMem=1280, maxMem=555755765 16/12/15 16:55:16 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 854.0 B, free 530.0 MB) 16/12/15 16:55:16 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 10.103.40.40:34755 (size: 854.0 B, free: 530.0 MB) 16/12/15 16:55:16 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:861 16/12/15 16:55:16 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 0 (ParallelCollectionRDD[0] at parallelize at RRDD.scala:454) 16/12/15 16:55:16 INFO TaskSchedulerImpl: Adding task set 0.0 with 1 tasks 16/12/15 16:55:17 ERROR ErrorMonitor: AssociationError [akka.tcp://sparkDriver@10.103.40.40:38177] <- [akka.tcp://driverPropsFetcher@10.103.25.39:24380]: Error [Shut down address: akka.tcp://driverPropsFetcher@10.103.25.39:24380] [ akka.remote.ShutDownAssociation: Shut down address: akka.tcp://driverPropsFetcher@10.103.25.39:24380 Caused by: akka.remote.transport.Transport$InvalidAssociationException: The remote system terminated the association because it is shutting down. ] akka.event.Logging$Error$NoCause$ 16/12/15 16:55:17 ERROR ErrorMonitor: AssociationError [akka.tcp://sparkDriver@10.103.40.40:38177] <- [akka.tcp://driverPropsFetcher@10.103.40.207:50921]: Error [Shut down address: akka.tcp://driverPropsFetcher@10.103.40.207:50921] [ akka.remote.ShutDownAssociation: Shut down address: akka.tcp://driverPropsFetcher@10.103.40.207:50921 Caused by: akka.remote.transport.Transport$InvalidAssociationException: The remote system terminated the association because it is shutting down. ] akka.event.Logging$Error$NoCause$ 16/12/15 16:55:17 INFO SparkDeploySchedulerBackend: Registered executor: AkkaRpcEndpointRef(Actor[akka.tcp://sparkExecutor@10.103.25.39:9011/user/Executor#1942442265]) with ID 1 16/12/15 16:55:17 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, 10.103.25.39, partition 0,PROCESS_LOCAL, 16604 bytes) 16/12/15 16:55:17 INFO BlockManagerMasterEndpoint: Registering block manager 10.103.25.39:15957 with 8.1 MB RAM, BlockManagerId(1, 10.103.25.39, 15957) 16/12/15 16:55:18 INFO SparkDeploySchedulerBackend: Registered executor: AkkaRpcEndpointRef(Actor[akka.tcp://sparkExecutor@10.103.40.207:60679/user/Executor#-1306991379]) with ID 0 16/12/15 16:55:18 INFO BlockManagerMasterEndpoint: Registering block manager 10.103.40.207:41038 with 8.1 MB RAM, BlockManagerId(0, 10.103.40.207, 41038) 16/12/15 16:55:18 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 10.103.25.39:15957 (size: 854.0 B, free: 8.1 MB) 16/12/15 16:55:18 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 1063 ms on 10.103.25.39 (1/1) 16/12/15 16:55:18 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 16/12/15 16:55:18 INFO DAGScheduler: ResultStage 0 (collectPartitions at NativeMethodAccessorImpl.java:-2) finished in 1.993 s 16/12/15 16:55:18 INFO DAGScheduler: Job 0 finished: collectPartitions at NativeMethodAccessorImpl.java:-2, took 2.225532 s 16/12/15 16:55:19 INFO BlockManagerInfo: Removed broadcast_0_piece0 on 10.103.40.40:34755 in memory (size: 854.0 B, free: 530.0 MB) 16/12/15 16:55:19 INFO BlockManagerInfo: Removed broadcast_0_piece0 on 10.103.25.39:15957 in memory (size: 854.0 B, free: 8.1 MB) 16/12/15 16:55:19 INFO ContextCleaner: Cleaned accumulator 1 Warning messages: 1: In FUN(X[[i]], ...) : Use Sepal_Length instead of Sepal.Length as column name 2: In FUN(X[[i]], ...) : Use Sepal_Width instead of Sepal.Width as column name 3: In FUN(X[[i]], ...) : Use Petal_Length instead of Petal.Length as column name 4: In FUN(X[[i]], ...) : Use Petal_Width instead of Petal.Width as column name 16/12/15 16:55:19 INFO SparkContext: Starting job: dfToCols at NativeMethodAccessorImpl.java:-2 16/12/15 16:55:19 INFO DAGScheduler: Got job 1 (dfToCols at NativeMethodAccessorImpl.java:-2) with 1 output partitions 16/12/15 16:55:19 INFO DAGScheduler: Final stage: ResultStage 1(dfToCols at NativeMethodAccessorImpl.java:-2) 16/12/15 16:55:19 INFO DAGScheduler: Parents of final stage: List() 16/12/15 16:55:19 INFO DAGScheduler: Missing parents: List() 16/12/15 16:55:19 INFO DAGScheduler: Submitting ResultStage 1 (MapPartitionsRDD[4] at dfToCols at NativeMethodAccessorImpl.java:-2), which has no missing parents 16/12/15 16:55:19 INFO MemoryStore: ensureFreeSpace(9176) called with curMem=0, maxMem=555755765 16/12/15 16:55:19 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 9.0 KB, free 530.0 MB) 16/12/15 16:55:19 INFO MemoryStore: ensureFreeSpace(3690) called with curMem=9176, maxMem=555755765 16/12/15 16:55:19 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 3.6 KB, free 530.0 MB) 16/12/15 16:55:19 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on 10.103.40.40:34755 (size: 3.6 KB, free: 530.0 MB) 16/12/15 16:55:19 INFO SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:861 16/12/15 16:55:19 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 1 (MapPartitionsRDD[4] at dfToCols at NativeMethodAccessorImpl.java:-2) 16/12/15 16:55:19 INFO TaskSchedulerImpl: Adding task set 1.0 with 1 tasks 16/12/15 16:55:19 INFO TaskSetManager: Starting task 0.0 in stage 1.0 (TID 1, 10.103.25.39, partition 0,PROCESS_LOCAL, 16604 bytes) 16/12/15 16:55:19 ERROR ErrorMonitor: AssociationError [akka.tcp://sparkDriver@10.103.40.40:38177] <- [akka.tcp://driverPropsFetcher@10.103.40.186:58345]: Error [Shut down address: akka.tcp://driverPropsFetcher@10.103.40.186:58345] [ akka.remote.ShutDownAssociation: Shut down address: akka.tcp://driverPropsFetcher@10.103.40.186:58345 Caused by: akka.remote.transport.Transport$InvalidAssociationException: The remote system terminated the association because it is shutting down. ] akka.event.Logging$Error$NoCause$ 16/12/15 16:55:19 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on 10.103.25.39:15957 (size: 3.6 KB, free: 8.1 MB) 16/12/15 16:55:20 INFO SparkDeploySchedulerBackend: Registered executor: AkkaRpcEndpointRef(Actor[akka.tcp://sparkExecutor@10.103.40.186:38037/user/Executor#998426628]) with ID 2 16/12/15 16:55:21 INFO BlockManagerMasterEndpoint: Registering block manager 10.103.40.186:19641 with 7.8 MB RAM, BlockManagerId(2, 10.103.40.186, 19641) 16/12/15 16:55:31 WARN TaskSetManager: Lost task 0.0 in stage 1.0 (TID 1, 10.103.25.39): java.net.SocketTimeoutException: Accept timed out at java.net.PlainSocketImpl.socketAccept(Native Method) at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:398) at java.net.ServerSocket.implAccept(ServerSocket.java:530) at java.net.ServerSocket.accept(ServerSocket.java:498) at org.apache.spark.api.r.RRDD$.createRWorker(RRDD.scala:426) at org.apache.spark.api.r.BaseRRDD.compute(RRDD.scala:62) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297) at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297) at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297) at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297) at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) at org.apache.spark.scheduler.Task.run(Task.scala:88) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) ) > SparkR: java.net.SocketTimeoutException: Accept timed out when running any > dataframe function > --------------------------------------------------------------------------------------------- > > Key: SPARK-13525 > URL: https://issues.apache.org/jira/browse/SPARK-13525 > Project: Spark > Issue Type: Bug > Components: SparkR > Reporter: Shubhanshu Mishra > Labels: sparkr > > I am following the code steps from this example: > https://spark.apache.org/docs/1.6.0/sparkr.html > There are multiple issues: > 1. The head and summary and filter methods are not overridden by spark. Hence > I need to call them using `SparkR::` namespace. > 2. When I try to execute the following, I get errors: > {code} > $> $R_HOME/bin/R > R version 3.2.3 (2015-12-10) -- "Wooden Christmas-Tree" > Copyright (C) 2015 The R Foundation for Statistical Computing > Platform: x86_64-pc-linux-gnu (64-bit) > R is free software and comes with ABSOLUTELY NO WARRANTY. > You are welcome to redistribute it under certain conditions. > Type 'license()' or 'licence()' for distribution details. > Natural language support but running in an English locale > R is a collaborative project with many contributors. > Type 'contributors()' for more information and > 'citation()' on how to cite R or R packages in publications. > Type 'demo()' for some demos, 'help()' for on-line help, or > 'help.start()' for an HTML browser interface to help. > Type 'q()' to quit R. > Welcome at Fri Feb 26 16:19:35 2016 > Attaching package: ‘SparkR’ > The following objects are masked from ‘package:base’: > colnames, colnames<-, drop, intersect, rank, rbind, sample, subset, > summary, transform > Launching java with spark-submit command > /content/smishra8/SOFTWARE/spark/bin/spark-submit --driver-memory "50g" > sparkr-shell /tmp/RtmpfBQRg6/backend_portc3bc16f09b1b > > df <- createDataFrame(sqlContext, iris) > Warning messages: > 1: In FUN(X[[i]], ...) : > Use Sepal_Length instead of Sepal.Length as column name > 2: In FUN(X[[i]], ...) : > Use Sepal_Width instead of Sepal.Width as column name > 3: In FUN(X[[i]], ...) : > Use Petal_Length instead of Petal.Length as column name > 4: In FUN(X[[i]], ...) : > Use Petal_Width instead of Petal.Width as column name > > training <- filter(df, df$Species != "setosa") > Error in filter(df, df$Species != "setosa") : > no method for coercing this S4 class to a vector > > training <- SparkR::filter(df, df$Species != "setosa") > > model <- SparkR::glm(Species ~ Sepal_Length + Sepal_Width, data = training, > > family = "binomial") > 16/02/26 16:26:46 ERROR Executor: Exception in task 0.0 in stage 1.0 (TID 1) > java.net.SocketTimeoutException: Accept timed out > at java.net.PlainSocketImpl.socketAccept(Native Method) > at > java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:398) > at java.net.ServerSocket.implAccept(ServerSocket.java:530) > at java.net.ServerSocket.accept(ServerSocket.java:498) > at org.apache.spark.api.r.RRDD$.createRWorker(RRDD.scala:431) > at org.apache.spark.api.r.BaseRRDD.compute(RRDD.scala:62) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:77) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:45) > at org.apache.spark.scheduler.Task.run(Task.scala:81) > at > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > 16/02/26 16:26:46 ERROR TaskSetManager: Task 0 in stage 1.0 failed 1 times; > aborting job > 16/02/26 16:26:46 ERROR RBackendHandler: fitRModelFormula on > org.apache.spark.ml.api.r.SparkRWrappers failed > Error in invokeJava(isStatic = TRUE, className, methodName, ...) : > org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 > in stage 1.0 failed 1 times, most recent failure: Lost task 0.0 in stage 1.0 > (TID 1, localhost): java.net.SocketTimeoutException: Accept timed out > at java.net.PlainSocketImpl.socketAccept(Native Method) > at > java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:398) > at java.net.ServerSocket.implAccept(ServerSocket.java:530) > at java.net.ServerSocket.accept(ServerSocket.java:498) > at org.apache.spark.api.r.RRDD$.createRWorker(RRDD.scala:431) > at org.apache.spark.api.r.BaseRRDD.compute(RRDD.scala:62) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > > > {code} > Even, when I try to run the head command on the dataframe, I get similar > error: > {code} > > SparkR::head(df) > 16/02/26 16:32:05 ERROR Executor: Exception in task 0.0 in stage 3.0 (TID 2) > java.net.SocketTimeoutException: Accept timed out > at java.net.PlainSocketImpl.socketAccept(Native Method) > at > java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:398) > at java.net.ServerSocket.implAccept(ServerSocket.java:530) > at java.net.ServerSocket.accept(ServerSocket.java:498) > at org.apache.spark.api.r.RRDD$.createRWorker(RRDD.scala:431) > at org.apache.spark.api.r.BaseRRDD.compute(RRDD.scala:62) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:69) > at org.apache.spark.scheduler.Task.run(Task.scala:81) > at > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > 16/02/26 16:32:05 ERROR TaskSetManager: Task 0 in stage 3.0 failed 1 times; > aborting job > 16/02/26 16:32:05 ERROR RBackendHandler: dfToCols on > org.apache.spark.sql.api.r.SQLUtils failed > Error in invokeJava(isStatic = TRUE, className, methodName, ...) : > org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 > in stage 3.0 failed 1 times, most recent failure: Lost task 0.0 in stage 3.0 > (TID 2, localhost): java.net.SocketTimeoutException: Accept timed out > at java.net.PlainSocketImpl.socketAccept(Native Method) > at > java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:398) > at java.net.ServerSocket.implAccept(ServerSocket.java:530) > at java.net.ServerSocket.accept(ServerSocket.java:498) > at org.apache.spark.api.r.RRDD$.createRWorker(RRDD.scala:431) > at org.apache.spark.api.r.BaseRRDD.compute(RRDD.scala:62) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:277) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > {code} > I have a .Rprofile file in my directory which looks like the following: > {code:title=.Rprofile|borderStyle=solid} > # Sample Rprofile.site file > # Things you might want to change > .First <- function(){ > cat("\nWelcome at", date(), "\n") > SPARK_HOME <- "/content/user/SOFTWARE/spark" > .libPaths(c(file.path(SPARK_HOME, "R", "lib"), .libPaths())) > library(SparkR) > sc <<- sparkR.init(master="local[20]", appName="Model SparkR", > sparkHome=SPARK_HOME, > sparkEnvir=list(spark.local.dir="./tmp", > spark.executor.memory="50g", > spark.driver.maxResultSize="50g", > spark.driver.memory="50g")) > sqlContext <<- sparkRSQL.init(sc) > } > .Last <- function(){ > cat("\nGoodbye at ", date(), "\n") > } > {code} > I am using the master branch of Spark since the following commit: > {code} > commit 35316cb0b744bef9bcb390411ddc321167f953be > Author: Yu ISHIKAWA <yuu.ishik...@gmail.com> > Date: Thu Feb 25 13:29:10 2016 -0800 > {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org