[ 
https://issues.apache.org/jira/browse/SPARK-18886?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15752722#comment-15752722
 ] 

Imran Rashid commented on SPARK-18886:
--------------------------------------

[~mridul] sorry if I am being slow here, but do you mind spelling out for me in 
more detail?  I'm *not* asking about the benefits of using locality preferences 
-- I get that part.  I'm asking about why the *delay*.  There has to be 
something happening during the delay which we want to wait for.

One possibility is that you've got multiple tasksets running concurrently, with 
different locality preferences.  You wouldn't want the first taskset to use all 
the resources, you'd rather take both tasksets into account.  This is 
accomplished with delay scheduling, but you don't actually *need* the delay.

Another possibility is that there is such a huge gap in runtime that you expect 
your preferred locations will finish *all* tasks in the taskset before that 
delay is up, by having some executors run multiple tasks.

The reason I'm trying to figure this out is to figure out if there is a 
sensible fix here (and what the smallest possible fix would be).  If this is 
it, then the fix I suggested above to Mark should handle this case, while still 
working as intended in other cases.

> Delay scheduling should not delay some executors indefinitely if one task is 
> scheduled before delay timeout
> -----------------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-18886
>                 URL: https://issues.apache.org/jira/browse/SPARK-18886
>             Project: Spark
>          Issue Type: Bug
>          Components: Scheduler
>    Affects Versions: 2.1.0
>            Reporter: Imran Rashid
>
> Delay scheduling can introduce an unbounded delay and underutilization of 
> cluster resources under the following circumstances:
> 1. Tasks have locality preferences for a subset of available resources
> 2. Tasks finish in less time than the delay scheduling.
> Instead of having *one* delay to wait for resources with better locality, 
> spark waits indefinitely.
> As an example, consider a cluster with 100 executors, and a taskset with 500 
> tasks.  Say all tasks have a preference for one executor, which is by itself 
> on one host.  Given the default locality wait of 3s per level, we end up with 
> a 6s delay till we schedule on other hosts (process wait + host wait).
> If each task takes 5 seconds (under the 6 second delay), then _all 500_ tasks 
> get scheduled on _only one_ executor.  This means you're only using a 1% of 
> your cluster, and you get a ~100x slowdown.  You'd actually be better off if 
> tasks took 7 seconds.
> *WORKAROUNDS*: 
> (1) You can change the locality wait times so that it is shorter than the 
> task execution time.  You need to take into account the sum of all wait times 
> to use all the resources on your cluster.  For example, if you have resources 
> on different racks, this will include the sum of 
> "spark.locality.wait.process" + "spark.locality.wait.node" + 
> "spark.locality.wait.rack".  Those each default to "3s".  The simplest way to 
> be to set "spark.locality.wait.process" to your desired wait interval, and 
> set both "spark.locality.wait.node" and "spark.locality.wait.rack" to "0".  
> For example, if your tasks take ~3 seconds on average, you might set 
> "spark.locality.wait.process" to "1s".
> Note that this workaround isn't perfect --with less delay scheduling, you may 
> not get as good resource locality.  After this issue is fixed, you'd most 
> likely want to undo these configuration changes.
> (2) The worst case here will only happen if your tasks have extreme skew in 
> their locality preferences.  Users may be able to modify their job to 
> controlling the distribution of the original input data.
> (2a) A shuffle may end up with very skewed locality preferences, especially 
> if you do a repartition starting from a small number of partitions.  (Shuffle 
> locality preference is assigned if any node has more than 20% of the shuffle 
> input data -- by chance, you may have one node just above that threshold, and 
> all other nodes just below it.)  In this case, you can turn off locality 
> preference for shuffle data by setting 
> {{spark.shuffle.reduceLocality.enabled=false}}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to