[ https://issues.apache.org/jira/browse/SPARK-18948?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15796730#comment-15796730 ]
Joseph K. Bradley commented on SPARK-18948: ------------------------------------------- OK, but please say if you'd like to continue this work under the DataFrame-based API. Thanks again. > Add Mean Percentile Rank metric for ranking algorithms > ------------------------------------------------------ > > Key: SPARK-18948 > URL: https://issues.apache.org/jira/browse/SPARK-18948 > Project: Spark > Issue Type: New Feature > Components: MLlib > Reporter: Danilo Ascione > > Add the Mean Percentile Rank (MPR) metric for ranking algorithms, as > described in the paper : > Hu, Y., Y. Koren, and C. Volinsky. “Collaborative Filtering for Implicit > Feedback Datasets.” In 2008 Eighth IEEE International Conference on Data > Mining, 263–72, 2008. doi:10.1109/ICDM.2008.22. > (http://yifanhu.net/PUB/cf.pdf) (NB: MPR is called "Expected percentile rank" > in the paper) > The ALS algorithm for implicit feedback in Spark ML is based on the same > paper. > Spark ML lacks an implementation of an appropriate metric for implicit > feedback, so the MPR metric can fulfill this use case. > This implementation add the metric to the RankingMetrics class under > org.apache.spark.mllib.evaluation (SPARK-3568), and it uses the same input > (prediction and label pairs). -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org