[ 
https://issues.apache.org/jira/browse/SPARK-18948?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15796730#comment-15796730
 ] 

Joseph K. Bradley commented on SPARK-18948:
-------------------------------------------

OK, but please say if you'd like to continue this work under the 
DataFrame-based API.  Thanks again.

> Add Mean Percentile Rank metric for ranking algorithms
> ------------------------------------------------------
>
>                 Key: SPARK-18948
>                 URL: https://issues.apache.org/jira/browse/SPARK-18948
>             Project: Spark
>          Issue Type: New Feature
>          Components: MLlib
>            Reporter: Danilo Ascione
>
> Add the Mean Percentile Rank (MPR) metric for ranking algorithms, as 
> described in the paper :
> Hu, Y., Y. Koren, and C. Volinsky. “Collaborative Filtering for Implicit 
> Feedback Datasets.” In 2008 Eighth IEEE International Conference on Data 
> Mining, 263–72, 2008. doi:10.1109/ICDM.2008.22. 
> (http://yifanhu.net/PUB/cf.pdf) (NB: MPR is called "Expected percentile rank" 
> in the paper)
> The ALS algorithm for implicit feedback in Spark ML is based on the same 
> paper. 
> Spark ML lacks an implementation of an appropriate metric for implicit 
> feedback, so the MPR metric can fulfill this use case.
> This implementation add the metric to the RankingMetrics class under 
> org.apache.spark.mllib.evaluation (SPARK-3568), and it uses the same input 
> (prediction and label pairs).



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to