[ 
https://issues.apache.org/jira/browse/SPARK-17993?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15815965#comment-15815965
 ] 

Michael Allman commented on SPARK-17993:
----------------------------------------

Hi Emre,

Thanks for reporting this. To clarify, what do you mean by "the
parquet-mr version" is different.



> Spark prints an avalanche of warning messages from Parquet when reading 
> parquet files written by older versions of Parquet-mr
> -----------------------------------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-17993
>                 URL: https://issues.apache.org/jira/browse/SPARK-17993
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>            Reporter: Michael Allman
>            Assignee: Michael Allman
>             Fix For: 2.1.0
>
>
> It looks like https://github.com/apache/spark/pull/14690 broke parquet log 
> output redirection. After that patch, when querying parquet files written by 
> Parquet-mr 1.6.0 Spark prints a torrent of (harmless) warning messages from 
> the Parquet reader:
> {code}
> Oct 18, 2016 7:42:18 PM WARNING: org.apache.parquet.CorruptStatistics: 
> Ignoring statistics because created_by could not be parsed (see PARQUET-251): 
> parquet-mr version 1.6.0
> org.apache.parquet.VersionParser$VersionParseException: Could not parse 
> created_by: parquet-mr version 1.6.0 using format: (.+) version ((.*) 
> )?\(build ?(.*)\)
>       at org.apache.parquet.VersionParser.parse(VersionParser.java:112)
>       at 
> org.apache.parquet.CorruptStatistics.shouldIgnoreStatistics(CorruptStatistics.java:60)
>       at 
> org.apache.parquet.format.converter.ParquetMetadataConverter.fromParquetStatistics(ParquetMetadataConverter.java:263)
>       at 
> org.apache.parquet.hadoop.ParquetFileReader$Chunk.readAllPages(ParquetFileReader.java:583)
>       at 
> org.apache.parquet.hadoop.ParquetFileReader.readNextRowGroup(ParquetFileReader.java:513)
>       at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.checkEndOfRowGroup(VectorizedParquetRecordReader.java:270)
>       at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextBatch(VectorizedParquetRecordReader.java:225)
>       at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextKeyValue(VectorizedParquetRecordReader.java:137)
>       at 
> org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
>       at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:102)
>       at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:162)
>       at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:102)
>       at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.scan_nextBatch$(Unknown
>  Source)
>       at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
>  Source)
>       at 
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
>       at 
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:372)
>       at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231)
>       at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225)
>       at 
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:803)
>       at 
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:803)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
>       at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>       at org.apache.spark.scheduler.Task.run(Task.scala:99)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>       at java.lang.Thread.run(Thread.java:745)
> {code}
> This only happens during execution, not planning, and it doesn't matter what 
> log level the {{SparkContext}} is set to.
> This is a regression I noted as something we needed to fix as a follow up to 
> PR 14690. I feel responsible, so I'm going to expedite a fix for it. I 
> suspect that PR broke Spark's Parquet log output redirection. That's the 
> premise I'm going by.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to