[ 
https://issues.apache.org/jira/browse/SPARK-19208?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15843884#comment-15843884
 ] 

zhengruifeng commented on SPARK-19208:
--------------------------------------

[~josephkb] I have considered of the analogy of Double column stats.
But there is a small difference: Some temporary intermediate variables are used 
by multi metrics.

{code}
val results: DataFrame = df.select(VectorSummary.mean("features"), 
VectorSummary.variance("features"))
{code}

The {{currMean}} and {{weightSum}} are used both in {{VectorSummary.mean}} and 
{{VectorSummary.variance}}. So we maybe have to compute {{currMean}} and 
{{weightSum}} twice, if we use two seperate udaf.

> MultivariateOnlineSummarizer performance optimization
> -----------------------------------------------------
>
>                 Key: SPARK-19208
>                 URL: https://issues.apache.org/jira/browse/SPARK-19208
>             Project: Spark
>          Issue Type: Improvement
>          Components: ML
>            Reporter: zhengruifeng
>         Attachments: Tests.pdf, WechatIMG2621.jpeg
>
>
> Now, {{MaxAbsScaler}} and {{MinMaxScaler}} are using 
> {{MultivariateOnlineSummarizer}} to compute the min/max.
> However {{MultivariateOnlineSummarizer}} will also compute extra unused 
> statistics. It slows down the task, moreover it is more prone to cause OOM.
> For example:
> env : --driver-memory 4G --executor-memory 1G --num-executors 4
> data: 
> [http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#kdd2010%20(bridge%20to%20algebra)]
>  748401 instances,   and 29,890,095 features
> {{MaxAbsScaler.fit}} fails because of OOM
> {{MultivariateOnlineSummarizer}} maintains 8 arrays:
> {code}
> private var currMean: Array[Double] = _
>   private var currM2n: Array[Double] = _
>   private var currM2: Array[Double] = _
>   private var currL1: Array[Double] = _
>   private var totalCnt: Long = 0
>   private var totalWeightSum: Double = 0.0
>   private var weightSquareSum: Double = 0.0
>   private var weightSum: Array[Double] = _
>   private var nnz: Array[Long] = _
>   private var currMax: Array[Double] = _
>   private var currMin: Array[Double] = _
> {code}
> For {{MaxAbsScaler}}, only 1 array is needed (max of abs value)
> For {{MinMaxScaler}}, only 3 arrays are needed (max, min, nnz)
> After modication in the pr, the above example run successfully.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to